Properties

Label 8800.4311
Modulus 88008800
Conductor 44004400
Order 2020
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,15,16,10]))
 
pari: [g,chi] = znchar(Mod(4311,8800))
 

Basic properties

Modulus: 88008800
Conductor: 44004400
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ4400(1011,)\chi_{4400}(1011,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8800.gw

χ8800(791,)\chi_{8800}(791,\cdot) χ8800(1671,)\chi_{8800}(1671,\cdot) χ8800(3431,)\chi_{8800}(3431,\cdot) χ8800(4311,)\chi_{8800}(4311,\cdot) χ8800(5191,)\chi_{8800}(5191,\cdot) χ8800(6071,)\chi_{8800}(6071,\cdot) χ8800(7831,)\chi_{8800}(7831,\cdot) χ8800(8711,)\chi_{8800}(8711,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

(2751,3301,4577,5601)(2751,3301,4577,5601)(1,i,e(45),1)(-1,-i,e\left(\frac{4}{5}\right),-1)

First values

aa 1-1113377991313171719192121232327272929
χ8800(4311,a) \chi_{ 8800 }(4311, a) 1111e(720)e\left(\frac{7}{20}\right)1-1e(710)e\left(\frac{7}{10}\right)e(1920)e\left(\frac{19}{20}\right)e(910)e\left(\frac{9}{10}\right)e(1320)e\left(\frac{13}{20}\right)e(1720)e\left(\frac{17}{20}\right)e(45)e\left(\frac{4}{5}\right)e(120)e\left(\frac{1}{20}\right)e(720)e\left(\frac{7}{20}\right)
sage: chi.jacobi_sum(n)
 
χ8800(4311,a)   \chi_{ 8800 }(4311,a) \; at   a=\;a = e.g. 2