Properties

Label 8800.4311
Modulus $8800$
Conductor $4400$
Order $20$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,15,16,10]))
 
pari: [g,chi] = znchar(Mod(4311,8800))
 

Basic properties

Modulus: \(8800\)
Conductor: \(4400\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4400}(1011,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8800.gw

\(\chi_{8800}(791,\cdot)\) \(\chi_{8800}(1671,\cdot)\) \(\chi_{8800}(3431,\cdot)\) \(\chi_{8800}(4311,\cdot)\) \(\chi_{8800}(5191,\cdot)\) \(\chi_{8800}(6071,\cdot)\) \(\chi_{8800}(7831,\cdot)\) \(\chi_{8800}(8711,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((2751,3301,4577,5601)\) → \((-1,-i,e\left(\frac{4}{5}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 8800 }(4311, a) \) \(1\)\(1\)\(e\left(\frac{7}{20}\right)\)\(-1\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{7}{20}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8800 }(4311,a) \;\) at \(\;a = \) e.g. 2