Properties

Label 8800.5063
Modulus 88008800
Conductor 44004400
Order 2020
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,5,19,16]))
 
pari: [g,chi] = znchar(Mod(5063,8800))
 

Basic properties

Modulus: 88008800
Conductor: 44004400
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ4400(3963,)\chi_{4400}(3963,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8800.ks

χ8800(247,)\chi_{8800}(247,\cdot) χ8800(3623,)\chi_{8800}(3623,\cdot) χ8800(4887,)\chi_{8800}(4887,\cdot) χ8800(5063,)\chi_{8800}(5063,\cdot) χ8800(5703,)\chi_{8800}(5703,\cdot) χ8800(6983,)\chi_{8800}(6983,\cdot) χ8800(8567,)\chi_{8800}(8567,\cdot) χ8800(8727,)\chi_{8800}(8727,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

(2751,3301,4577,5601)(2751,3301,4577,5601)(1,i,e(1920),e(45))(-1,i,e\left(\frac{19}{20}\right),e\left(\frac{4}{5}\right))

First values

aa 1-1113377991313171719192121232327272929
χ8800(5063,a) \chi_{ 8800 }(5063, a) 1111e(310)e\left(\frac{3}{10}\right)e(720)e\left(\frac{7}{20}\right)e(35)e\left(\frac{3}{5}\right)e(35)e\left(\frac{3}{5}\right)e(1120)e\left(\frac{11}{20}\right)i-ie(1320)e\left(\frac{13}{20}\right)e(920)e\left(\frac{9}{20}\right)e(910)e\left(\frac{9}{10}\right)ii
sage: chi.jacobi_sum(n)
 
χ8800(5063,a)   \chi_{ 8800 }(5063,a) \; at   a=\;a = e.g. 2