from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8800, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,5,4,8]))
pari: [g,chi] = znchar(Mod(5241,8800))
Basic properties
Modulus: | \(8800\) | |
Conductor: | \(4400\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(20\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{4400}(1941,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 8800.jy
\(\chi_{8800}(361,\cdot)\) \(\chi_{8800}(521,\cdot)\) \(\chi_{8800}(841,\cdot)\) \(\chi_{8800}(1081,\cdot)\) \(\chi_{8800}(4761,\cdot)\) \(\chi_{8800}(4921,\cdot)\) \(\chi_{8800}(5241,\cdot)\) \(\chi_{8800}(5481,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{20})\) |
Fixed field: | Number field defined by a degree 20 polynomial |
Values on generators
\((2751,3301,4577,5601)\) → \((1,i,e\left(\frac{1}{5}\right),e\left(\frac{2}{5}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 8800 }(5241, a) \) | \(1\) | \(1\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) |
sage: chi.jacobi_sum(n)