Properties

Label 8800.6081
Modulus 88008800
Conductor 275275
Order 55
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,4,6]))
 
pari: [g,chi] = znchar(Mod(6081,8800))
 

Basic properties

Modulus: 88008800
Conductor: 275275
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 55
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ275(31,)\chi_{275}(31,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8800.bq

χ8800(641,)\chi_{8800}(641,\cdot) χ8800(961,)\chi_{8800}(961,\cdot) χ8800(6081,)\chi_{8800}(6081,\cdot) χ8800(8321,)\chi_{8800}(8321,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ5)\Q(\zeta_{5})
Fixed field: 5.5.5719140625.4

Values on generators

(2751,3301,4577,5601)(2751,3301,4577,5601)(1,1,e(25),e(35))(1,1,e\left(\frac{2}{5}\right),e\left(\frac{3}{5}\right))

First values

aa 1-1113377991313171719192121232327272929
χ8800(6081,a) \chi_{ 8800 }(6081, a) 1111e(35)e\left(\frac{3}{5}\right)e(15)e\left(\frac{1}{5}\right)e(15)e\left(\frac{1}{5}\right)e(15)e\left(\frac{1}{5}\right)e(35)e\left(\frac{3}{5}\right)11e(45)e\left(\frac{4}{5}\right)e(25)e\left(\frac{2}{5}\right)e(45)e\left(\frac{4}{5}\right)11
sage: chi.jacobi_sum(n)
 
χ8800(6081,a)   \chi_{ 8800 }(6081,a) \; at   a=\;a = e.g. 2