from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8800, base_ring=CyclotomicField(40))
M = H._module
chi = DirichletCharacter(H, M([20,15,32,36]))
pari: [g,chi] = znchar(Mod(611,8800))
χ8800(371,⋅)
χ8800(611,⋅)
χ8800(931,⋅)
χ8800(1091,⋅)
χ8800(2571,⋅)
χ8800(2811,⋅)
χ8800(3131,⋅)
χ8800(3291,⋅)
χ8800(4771,⋅)
χ8800(5011,⋅)
χ8800(5331,⋅)
χ8800(5491,⋅)
χ8800(6971,⋅)
χ8800(7211,⋅)
χ8800(7531,⋅)
χ8800(7691,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2751,3301,4577,5601) → (−1,e(83),e(54),e(109))
a |
−1 | 1 | 3 | 7 | 9 | 13 | 17 | 19 | 21 | 23 | 27 | 29 |
χ8800(611,a) |
1 | 1 | e(4017) | e(2011) | e(2017) | e(4029) | 1 | e(409) | e(4039) | e(2011) | e(4011) | e(401) |