Properties

Label 8800.6357
Modulus $8800$
Conductor $1760$
Order $8$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,5,2,4]))
 
pari: [g,chi] = znchar(Mod(6357,8800))
 

Basic properties

Modulus: \(8800\)
Conductor: \(1760\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(8\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1760}(1077,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8800.ch

\(\chi_{8800}(1693,\cdot)\) \(\chi_{8800}(1957,\cdot)\) \(\chi_{8800}(6093,\cdot)\) \(\chi_{8800}(6357,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.491270438912000000.1

Values on generators

\((2751,3301,4577,5601)\) → \((1,e\left(\frac{5}{8}\right),i,-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 8800 }(6357, a) \) \(1\)\(1\)\(e\left(\frac{5}{8}\right)\)\(1\)\(i\)\(e\left(\frac{5}{8}\right)\)\(i\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(-1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{7}{8}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8800 }(6357,a) \;\) at \(\;a = \) e.g. 2