Properties

Label 8800.6357
Modulus 88008800
Conductor 17601760
Order 88
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,5,2,4]))
 
pari: [g,chi] = znchar(Mod(6357,8800))
 

Basic properties

Modulus: 88008800
Conductor: 17601760
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1760(1077,)\chi_{1760}(1077,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8800.ch

χ8800(1693,)\chi_{8800}(1693,\cdot) χ8800(1957,)\chi_{8800}(1957,\cdot) χ8800(6093,)\chi_{8800}(6093,\cdot) χ8800(6357,)\chi_{8800}(6357,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.8.491270438912000000.1

Values on generators

(2751,3301,4577,5601)(2751,3301,4577,5601)(1,e(58),i,1)(1,e\left(\frac{5}{8}\right),i,-1)

First values

aa 1-1113377991313171719192121232327272929
χ8800(6357,a) \chi_{ 8800 }(6357, a) 1111e(58)e\left(\frac{5}{8}\right)11iie(58)e\left(\frac{5}{8}\right)iie(38)e\left(\frac{3}{8}\right)e(58)e\left(\frac{5}{8}\right)1-1e(78)e\left(\frac{7}{8}\right)e(78)e\left(\frac{7}{8}\right)
sage: chi.jacobi_sum(n)
 
χ8800(6357,a)   \chi_{ 8800 }(6357,a) \; at   a=\;a = e.g. 2