Properties

Label 8800.7247
Modulus 88008800
Conductor 22002200
Order 2020
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,10,17,12]))
 
pari: [g,chi] = znchar(Mod(7247,8800))
 

Basic properties

Modulus: 88008800
Conductor: 22002200
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2020
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2200(1747,)\chi_{2200}(1747,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8800.hz

χ8800(3887,)\chi_{8800}(3887,\cdot) χ8800(4623,)\chi_{8800}(4623,\cdot) χ8800(5327,)\chi_{8800}(5327,\cdot) χ8800(5967,)\chi_{8800}(5967,\cdot) χ8800(7247,)\chi_{8800}(7247,\cdot) χ8800(8303,)\chi_{8800}(8303,\cdot) χ8800(8463,)\chi_{8800}(8463,\cdot) χ8800(8783,)\chi_{8800}(8783,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ20)\Q(\zeta_{20})
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

(2751,3301,4577,5601)(2751,3301,4577,5601)(1,1,e(1720),e(35))(-1,-1,e\left(\frac{17}{20}\right),e\left(\frac{3}{5}\right))

First values

aa 1-1113377991313171719192121232327272929
χ8800(7247,a) \chi_{ 8800 }(7247, a) 1111i-ie(1920)e\left(\frac{19}{20}\right)1-1iie(920)e\left(\frac{9}{20}\right)e(110)e\left(\frac{1}{10}\right)e(710)e\left(\frac{7}{10}\right)e(1720)e\left(\frac{17}{20}\right)iie(25)e\left(\frac{2}{5}\right)
sage: chi.jacobi_sum(n)
 
χ8800(7247,a)   \chi_{ 8800 }(7247,a) \; at   a=\;a = e.g. 2