Properties

Label 8800.8149
Modulus $8800$
Conductor $1760$
Order $40$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8800, base_ring=CyclotomicField(40))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,25,20,24]))
 
pari: [g,chi] = znchar(Mod(8149,8800))
 

Basic properties

Modulus: \(8800\)
Conductor: \(1760\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(40\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1760}(1109,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8800.mq

\(\chi_{8800}(949,\cdot)\) \(\chi_{8800}(1149,\cdot)\) \(\chi_{8800}(1549,\cdot)\) \(\chi_{8800}(2149,\cdot)\) \(\chi_{8800}(3149,\cdot)\) \(\chi_{8800}(3349,\cdot)\) \(\chi_{8800}(3749,\cdot)\) \(\chi_{8800}(4349,\cdot)\) \(\chi_{8800}(5349,\cdot)\) \(\chi_{8800}(5549,\cdot)\) \(\chi_{8800}(5949,\cdot)\) \(\chi_{8800}(6549,\cdot)\) \(\chi_{8800}(7549,\cdot)\) \(\chi_{8800}(7749,\cdot)\) \(\chi_{8800}(8149,\cdot)\) \(\chi_{8800}(8749,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{40})\)
Fixed field: Number field defined by a degree 40 polynomial

Values on generators

\((2751,3301,4577,5601)\) → \((1,e\left(\frac{5}{8}\right),-1,e\left(\frac{3}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 8800 }(8149, a) \) \(1\)\(1\)\(e\left(\frac{7}{40}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{19}{40}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{7}{40}\right)\)\(e\left(\frac{1}{8}\right)\)\(i\)\(e\left(\frac{21}{40}\right)\)\(e\left(\frac{3}{40}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8800 }(8149,a) \;\) at \(\;a = \) e.g. 2