from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8800, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,0,11,2]))
chi.galois_orbit()
[g,chi] = znchar(Mod(673,8800))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(8800\) | |
Conductor: | \(275\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(20\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 275.bn | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{20})\) |
Fixed field: | Number field defined by a degree 20 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{8800}(673,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) |
\(\chi_{8800}(833,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) |
\(\chi_{8800}(1377,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) |
\(\chi_{8800}(3713,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) |
\(\chi_{8800}(6497,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{8800}(6817,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) |
\(\chi_{8800}(7553,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) |
\(\chi_{8800}(7937,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) |