from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(882, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,32]))
chi.galois_orbit()
[g,chi] = znchar(Mod(37,882))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(882\) | |
Conductor: | \(49\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(21\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 49.g | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | Number field defined by a degree 21 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{882}(37,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{21}\right)\) |
\(\chi_{882}(109,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{10}{21}\right)\) |
\(\chi_{882}(163,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{21}\right)\) |
\(\chi_{882}(235,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{21}\right)\) |
\(\chi_{882}(289,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{21}\right)\) |
\(\chi_{882}(415,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{20}{21}\right)\) |
\(\chi_{882}(487,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{16}{21}\right)\) |
\(\chi_{882}(541,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{21}\right)\) |
\(\chi_{882}(613,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{21}\right)\) |
\(\chi_{882}(739,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{21}\right)\) |
\(\chi_{882}(793,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{21}\right)\) |
\(\chi_{882}(865,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{21}\right)\) |