from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8820, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,35,0,29]))
pari: [g,chi] = znchar(Mod(7061,8820))
Basic properties
Modulus: | \(8820\) | |
Conductor: | \(441\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{441}(5,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 8820.gi
\(\chi_{8820}(101,\cdot)\) \(\chi_{8820}(761,\cdot)\) \(\chi_{8820}(1361,\cdot)\) \(\chi_{8820}(2021,\cdot)\) \(\chi_{8820}(2621,\cdot)\) \(\chi_{8820}(3281,\cdot)\) \(\chi_{8820}(3881,\cdot)\) \(\chi_{8820}(4541,\cdot)\) \(\chi_{8820}(5141,\cdot)\) \(\chi_{8820}(7061,\cdot)\) \(\chi_{8820}(7661,\cdot)\) \(\chi_{8820}(8321,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | Number field defined by a degree 42 polynomial |
Values on generators
\((4411,7841,7057,1081)\) → \((1,e\left(\frac{5}{6}\right),1,e\left(\frac{29}{42}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 8820 }(7061, a) \) | \(1\) | \(1\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(-1\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) |
sage: chi.jacobi_sum(n)