Properties

Label 8820.7061
Modulus $8820$
Conductor $441$
Order $42$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8820, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,35,0,29]))
 
pari: [g,chi] = znchar(Mod(7061,8820))
 

Basic properties

Modulus: \(8820\)
Conductor: \(441\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{441}(5,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8820.gi

\(\chi_{8820}(101,\cdot)\) \(\chi_{8820}(761,\cdot)\) \(\chi_{8820}(1361,\cdot)\) \(\chi_{8820}(2021,\cdot)\) \(\chi_{8820}(2621,\cdot)\) \(\chi_{8820}(3281,\cdot)\) \(\chi_{8820}(3881,\cdot)\) \(\chi_{8820}(4541,\cdot)\) \(\chi_{8820}(5141,\cdot)\) \(\chi_{8820}(7061,\cdot)\) \(\chi_{8820}(7661,\cdot)\) \(\chi_{8820}(8321,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((4411,7841,7057,1081)\) → \((1,e\left(\frac{5}{6}\right),1,e\left(\frac{29}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 8820 }(7061, a) \) \(1\)\(1\)\(e\left(\frac{19}{42}\right)\)\(e\left(\frac{19}{42}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{11}{42}\right)\)\(-1\)\(e\left(\frac{2}{21}\right)\)\(e\left(\frac{11}{21}\right)\)\(e\left(\frac{10}{21}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 8820 }(7061,a) \;\) at \(\;a = \) e.g. 2