from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8820, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,35,21,1]))
chi.galois_orbit()
[g,chi] = znchar(Mod(689,8820))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(8820\) | |
Conductor: | \(2205\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 2205.dv | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | 42.42.64499777946714835177141019992254259402911208109553981749879955329445342864388015575823925406164646148681640625.2 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{8820}(689,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{41}{42}\right)\) |
\(\chi_{8820}(929,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{37}{42}\right)\) |
\(\chi_{8820}(1949,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{23}{42}\right)\) |
\(\chi_{8820}(2189,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{1}{42}\right)\) |
\(\chi_{8820}(3209,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{5}{42}\right)\) |
\(\chi_{8820}(4469,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{29}{42}\right)\) |
\(\chi_{8820}(4709,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{13}{42}\right)\) |
\(\chi_{8820}(5729,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{11}{42}\right)\) |
\(\chi_{8820}(5969,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{19}{42}\right)\) |
\(\chi_{8820}(7229,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{25}{42}\right)\) |
\(\chi_{8820}(8249,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{17}{42}\right)\) |
\(\chi_{8820}(8489,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{31}{42}\right)\) |