sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(900, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,20,21]))
pari:[g,chi] = znchar(Mod(103,900))
Modulus: | 900 | |
Conductor: | 900 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 60 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ900(67,⋅)
χ900(103,⋅)
χ900(187,⋅)
χ900(223,⋅)
χ900(247,⋅)
χ900(283,⋅)
χ900(367,⋅)
χ900(403,⋅)
χ900(427,⋅)
χ900(463,⋅)
χ900(547,⋅)
χ900(583,⋅)
χ900(727,⋅)
χ900(763,⋅)
χ900(787,⋅)
χ900(823,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(451,101,577) → (−1,e(31),e(207))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ900(103,a) |
1 | 1 | e(127) | e(3013) | e(6019) | e(2011) | e(54) | e(601) | e(301) | e(3029) | e(203) | e(151) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)