Properties

Label 900.299
Modulus 900900
Conductor 180180
Order 66
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([3,1,3]))
 
pari: [g,chi] = znchar(Mod(299,900))
 

Basic properties

Modulus: 900900
Conductor: 180180
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ180(119,)\chi_{180}(119,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 900.o

χ900(299,)\chi_{900}(299,\cdot) χ900(599,)\chi_{900}(599,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.6.157464000.1

Values on generators

(451,101,577)(451,101,577)(1,e(16),1)(-1,e\left(\frac{1}{6}\right),-1)

First values

aa 1-11177111113131717191923232929313137374141
χ900(299,a) \chi_{ 900 }(299, a) 1111e(23)e\left(\frac{2}{3}\right)e(23)e\left(\frac{2}{3}\right)e(56)e\left(\frac{5}{6}\right)111-1e(56)e\left(\frac{5}{6}\right)e(16)e\left(\frac{1}{6}\right)e(56)e\left(\frac{5}{6}\right)1-1e(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ900(299,a)   \chi_{ 900 }(299,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ900(299,))   \tau_{ a }( \chi_{ 900 }(299,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ900(299,),χ900(n,))   J(\chi_{ 900 }(299,·),\chi_{ 900 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ900(299,))  K(a,b,\chi_{ 900 }(299,·)) \; at   a,b=\; a,b = e.g. 1,2