Properties

Label 9075.499
Modulus $9075$
Conductor $605$
Order $110$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9075, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,55,52]))
 
pari: [g,chi] = znchar(Mod(499,9075))
 

Basic properties

Modulus: \(9075\)
Conductor: \(605\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{605}(499,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9075.ei

\(\chi_{9075}(49,\cdot)\) \(\chi_{9075}(499,\cdot)\) \(\chi_{9075}(724,\cdot)\) \(\chi_{9075}(949,\cdot)\) \(\chi_{9075}(1324,\cdot)\) \(\chi_{9075}(1549,\cdot)\) \(\chi_{9075}(1699,\cdot)\) \(\chi_{9075}(1774,\cdot)\) \(\chi_{9075}(2149,\cdot)\) \(\chi_{9075}(2374,\cdot)\) \(\chi_{9075}(2524,\cdot)\) \(\chi_{9075}(2599,\cdot)\) \(\chi_{9075}(2974,\cdot)\) \(\chi_{9075}(3199,\cdot)\) \(\chi_{9075}(3349,\cdot)\) \(\chi_{9075}(3424,\cdot)\) \(\chi_{9075}(3799,\cdot)\) \(\chi_{9075}(4024,\cdot)\) \(\chi_{9075}(4174,\cdot)\) \(\chi_{9075}(4249,\cdot)\) \(\chi_{9075}(4624,\cdot)\) \(\chi_{9075}(4999,\cdot)\) \(\chi_{9075}(5074,\cdot)\) \(\chi_{9075}(5449,\cdot)\) \(\chi_{9075}(5674,\cdot)\) \(\chi_{9075}(5824,\cdot)\) \(\chi_{9075}(5899,\cdot)\) \(\chi_{9075}(6274,\cdot)\) \(\chi_{9075}(6499,\cdot)\) \(\chi_{9075}(6649,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((3026,727,5326)\) → \((1,-1,e\left(\frac{26}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(19\)\(23\)
\( \chi_{ 9075 }(499, a) \) \(1\)\(1\)\(e\left(\frac{107}{110}\right)\)\(e\left(\frac{52}{55}\right)\)\(e\left(\frac{89}{110}\right)\)\(e\left(\frac{101}{110}\right)\)\(e\left(\frac{27}{110}\right)\)\(e\left(\frac{43}{55}\right)\)\(e\left(\frac{49}{55}\right)\)\(e\left(\frac{73}{110}\right)\)\(e\left(\frac{13}{55}\right)\)\(e\left(\frac{13}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 9075 }(499,a) \;\) at \(\;a = \) e.g. 2