Properties

Label 9075.784
Modulus $9075$
Conductor $3025$
Order $110$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9075, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,77,18]))
 
pari: [g,chi] = znchar(Mod(784,9075))
 

Basic properties

Modulus: \(9075\)
Conductor: \(3025\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3025}(784,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9075.fk

\(\chi_{9075}(379,\cdot)\) \(\chi_{9075}(394,\cdot)\) \(\chi_{9075}(664,\cdot)\) \(\chi_{9075}(784,\cdot)\) \(\chi_{9075}(1204,\cdot)\) \(\chi_{9075}(1489,\cdot)\) \(\chi_{9075}(1609,\cdot)\) \(\chi_{9075}(2029,\cdot)\) \(\chi_{9075}(2044,\cdot)\) \(\chi_{9075}(2314,\cdot)\) \(\chi_{9075}(2434,\cdot)\) \(\chi_{9075}(2854,\cdot)\) \(\chi_{9075}(2869,\cdot)\) \(\chi_{9075}(3139,\cdot)\) \(\chi_{9075}(3259,\cdot)\) \(\chi_{9075}(3679,\cdot)\) \(\chi_{9075}(3694,\cdot)\) \(\chi_{9075}(3964,\cdot)\) \(\chi_{9075}(4084,\cdot)\) \(\chi_{9075}(4519,\cdot)\) \(\chi_{9075}(4789,\cdot)\) \(\chi_{9075}(4909,\cdot)\) \(\chi_{9075}(5329,\cdot)\) \(\chi_{9075}(5344,\cdot)\) \(\chi_{9075}(5614,\cdot)\) \(\chi_{9075}(5734,\cdot)\) \(\chi_{9075}(6154,\cdot)\) \(\chi_{9075}(6169,\cdot)\) \(\chi_{9075}(6439,\cdot)\) \(\chi_{9075}(6559,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((3026,727,5326)\) → \((1,e\left(\frac{7}{10}\right),e\left(\frac{9}{55}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(19\)\(23\)
\( \chi_{ 9075 }(784, a) \) \(1\)\(1\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{71}{110}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{91}{110}\right)\)\(e\left(\frac{28}{55}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{13}{110}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{17}{110}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 9075 }(784,a) \;\) at \(\;a = \) e.g. 2