Properties

Label 92.43
Modulus 9292
Conductor 9292
Order 2222
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(92, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,5]))
 
pari: [g,chi] = znchar(Mod(43,92))
 

Basic properties

Modulus: 9292
Conductor: 9292
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2222
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 92.h

χ92(7,)\chi_{92}(7,\cdot) χ92(11,)\chi_{92}(11,\cdot) χ92(15,)\chi_{92}(15,\cdot) χ92(19,)\chi_{92}(19,\cdot) χ92(43,)\chi_{92}(43,\cdot) χ92(51,)\chi_{92}(51,\cdot) χ92(63,)\chi_{92}(63,\cdot) χ92(67,)\chi_{92}(67,\cdot) χ92(79,)\chi_{92}(79,\cdot) χ92(83,)\chi_{92}(83,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ11)\Q(\zeta_{11})
Fixed field: Q(ζ92)+\Q(\zeta_{92})^+

Values on generators

(47,5)(47,5)(1,e(522))(-1,e\left(\frac{5}{22}\right))

First values

aa 1-11133557799111113131515171719192121
χ92(43,a) \chi_{ 92 }(43, a) 1111e(322)e\left(\frac{3}{22}\right)e(522)e\left(\frac{5}{22}\right)e(911)e\left(\frac{9}{11}\right)e(311)e\left(\frac{3}{11}\right)e(611)e\left(\frac{6}{11}\right)e(211)e\left(\frac{2}{11}\right)e(411)e\left(\frac{4}{11}\right)e(1322)e\left(\frac{13}{22}\right)e(1011)e\left(\frac{10}{11}\right)e(2122)e\left(\frac{21}{22}\right)
sage: chi.jacobi_sum(n)
 
χ92(43,a)   \chi_{ 92 }(43,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ92(43,))   \tau_{ a }( \chi_{ 92 }(43,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ92(43,),χ92(n,))   J(\chi_{ 92 }(43,·),\chi_{ 92 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ92(43,))  K(a,b,\chi_{ 92 }(43,·)) \; at   a,b=\; a,b = e.g. 1,2