sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(92, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,5]))
pari:[g,chi] = znchar(Mod(43,92))
Modulus: | 92 | |
Conductor: | 92 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 22 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ92(7,⋅)
χ92(11,⋅)
χ92(15,⋅)
χ92(19,⋅)
χ92(43,⋅)
χ92(51,⋅)
χ92(63,⋅)
χ92(67,⋅)
χ92(79,⋅)
χ92(83,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(47,5) → (−1,e(225))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 |
χ92(43,a) |
1 | 1 | e(223) | e(225) | e(119) | e(113) | e(116) | e(112) | e(114) | e(2213) | e(1110) | e(2221) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)