from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(920, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([22,22,11,34]))
pari: [g,chi] = znchar(Mod(107,920))
Basic properties
Modulus: | ||
Conductor: | sage: chi.conductor()
pari: znconreyconductor(g,chi)
| |
Order: | sage: chi.multiplicative_order()
pari: charorder(g,chi)
| |
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 920.bs
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | |
Fixed field: | 44.0.13383169230192059253459701104387771124501004765020501667165784506368000000000000000000000000000000000.1 |
Values on generators
→
First values
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)