Properties

Label 920.107
Modulus 920920
Conductor 920920
Order 4444
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(44))
 
M = H._module
 
chi = DirichletCharacter(H, M([22,22,11,34]))
 
pari: [g,chi] = znchar(Mod(107,920))
 

Basic properties

Modulus: 920920
Conductor: 920920
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4444
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 920.bs

χ920(43,)\chi_{920}(43,\cdot) χ920(67,)\chi_{920}(67,\cdot) χ920(83,)\chi_{920}(83,\cdot) χ920(107,)\chi_{920}(107,\cdot) χ920(203,)\chi_{920}(203,\cdot) χ920(227,)\chi_{920}(227,\cdot) χ920(267,)\chi_{920}(267,\cdot) χ920(283,)\chi_{920}(283,\cdot) χ920(387,)\chi_{920}(387,\cdot) χ920(467,)\chi_{920}(467,\cdot) χ920(523,)\chi_{920}(523,\cdot) χ920(563,)\chi_{920}(563,\cdot) χ920(603,)\chi_{920}(603,\cdot) χ920(707,)\chi_{920}(707,\cdot) χ920(723,)\chi_{920}(723,\cdot) χ920(747,)\chi_{920}(747,\cdot) χ920(787,)\chi_{920}(787,\cdot) χ920(803,)\chi_{920}(803,\cdot) χ920(843,)\chi_{920}(843,\cdot) χ920(907,)\chi_{920}(907,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ44)\Q(\zeta_{44})
Fixed field: 44.0.13383169230192059253459701104387771124501004765020501667165784506368000000000000000000000000000000000.1

Values on generators

(231,461,737,281)(231,461,737,281)(1,1,i,e(1722))(-1,-1,i,e\left(\frac{17}{22}\right))

First values

aa 1-1113377991111131317171919212127272929
χ920(107,a) \chi_{ 920 }(107, a) 1-111e(544)e\left(\frac{5}{44}\right)e(1944)e\left(\frac{19}{44}\right)e(522)e\left(\frac{5}{22}\right)e(2122)e\left(\frac{21}{22}\right)e(344)e\left(\frac{3}{44}\right)e(2944)e\left(\frac{29}{44}\right)e(111)e\left(\frac{1}{11}\right)e(611)e\left(\frac{6}{11}\right)e(1544)e\left(\frac{15}{44}\right)e(1011)e\left(\frac{10}{11}\right)
sage: chi.jacobi_sum(n)
 
χ920(107,a)   \chi_{ 920 }(107,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ920(107,))   \tau_{ a }( \chi_{ 920 }(107,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ920(107,),χ920(n,))   J(\chi_{ 920 }(107,·),\chi_{ 920 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ920(107,))  K(a,b,\chi_{ 920 }(107,·)) \; at   a,b=\; a,b = e.g. 1,2