Properties

Label 920.411
Modulus $920$
Conductor $184$
Order $22$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(920, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,11,0,5]))
 
pari: [g,chi] = znchar(Mod(411,920))
 

Basic properties

Modulus: \(920\)
Conductor: \(184\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{184}(43,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 920.bb

\(\chi_{920}(11,\cdot)\) \(\chi_{920}(51,\cdot)\) \(\chi_{920}(171,\cdot)\) \(\chi_{920}(251,\cdot)\) \(\chi_{920}(291,\cdot)\) \(\chi_{920}(411,\cdot)\) \(\chi_{920}(451,\cdot)\) \(\chi_{920}(571,\cdot)\) \(\chi_{920}(651,\cdot)\) \(\chi_{920}(891,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 22.22.339058325839400057321133061640411938816.1

Values on generators

\((231,461,737,281)\) → \((-1,-1,1,e\left(\frac{5}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(27\)\(29\)
\( \chi_{ 920 }(411, a) \) \(1\)\(1\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{13}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 920 }(411,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 920 }(411,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 920 }(411,·),\chi_{ 920 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 920 }(411,·)) \;\) at \(\; a,b = \) e.g. 1,2