sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(920, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([0,22,11,18]))
pari:[g,chi] = znchar(Mod(517,920))
Modulus: | 920 | |
Conductor: | 920 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 44 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ920(37,⋅)
χ920(53,⋅)
χ920(157,⋅)
χ920(237,⋅)
χ920(293,⋅)
χ920(333,⋅)
χ920(373,⋅)
χ920(477,⋅)
χ920(493,⋅)
χ920(517,⋅)
χ920(557,⋅)
χ920(573,⋅)
χ920(613,⋅)
χ920(677,⋅)
χ920(733,⋅)
χ920(757,⋅)
χ920(773,⋅)
χ920(797,⋅)
χ920(893,⋅)
χ920(917,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(231,461,737,281) → (1,−1,i,e(229))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 19 | 21 | 27 | 29 |
χ920(517,a) |
1 | 1 | e(4435) | e(441) | e(2213) | e(112) | e(4443) | e(445) | e(223) | e(119) | e(4417) | e(114) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)