from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(920, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([22,22,11,36]))
pari: [g,chi] = znchar(Mod(627,920))
Basic properties
Modulus: | \(920\) | |
Conductor: | \(920\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(44\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 920.bq
\(\chi_{920}(3,\cdot)\) \(\chi_{920}(27,\cdot)\) \(\chi_{920}(123,\cdot)\) \(\chi_{920}(147,\cdot)\) \(\chi_{920}(163,\cdot)\) \(\chi_{920}(187,\cdot)\) \(\chi_{920}(243,\cdot)\) \(\chi_{920}(307,\cdot)\) \(\chi_{920}(347,\cdot)\) \(\chi_{920}(363,\cdot)\) \(\chi_{920}(403,\cdot)\) \(\chi_{920}(427,\cdot)\) \(\chi_{920}(443,\cdot)\) \(\chi_{920}(547,\cdot)\) \(\chi_{920}(587,\cdot)\) \(\chi_{920}(627,\cdot)\) \(\chi_{920}(683,\cdot)\) \(\chi_{920}(763,\cdot)\) \(\chi_{920}(867,\cdot)\) \(\chi_{920}(883,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{44})\) |
Fixed field: | Number field defined by a degree 44 polynomial |
Values on generators
\((231,461,737,281)\) → \((-1,-1,i,e\left(\frac{9}{11}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(27\) | \(29\) |
\( \chi_{ 920 }(627, a) \) | \(1\) | \(1\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{31}{44}\right)\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{8}{11}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)