Properties

Label 931.759
Modulus 931931
Conductor 931931
Order 4242
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(931, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([37,21]))
 
pari: [g,chi] = znchar(Mod(759,931))
 

Basic properties

Modulus: 931931
Conductor: 931931
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 931.bt

χ931(75,)\chi_{931}(75,\cdot) χ931(94,)\chi_{931}(94,\cdot) χ931(208,)\chi_{931}(208,\cdot) χ931(341,)\chi_{931}(341,\cdot) χ931(360,)\chi_{931}(360,\cdot) χ931(474,)\chi_{931}(474,\cdot) χ931(493,)\chi_{931}(493,\cdot) χ931(626,)\chi_{931}(626,\cdot) χ931(740,)\chi_{931}(740,\cdot) χ931(759,)\chi_{931}(759,\cdot) χ931(873,)\chi_{931}(873,\cdot) χ931(892,)\chi_{931}(892,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

(248,344)(248,344)(e(3742),1)(e\left(\frac{37}{42}\right),-1)

First values

aa 1-11122334455668899101011111212
χ931(759,a) \chi_{ 931 }(759, a) 1111e(1742)e\left(\frac{17}{42}\right)e(821)e\left(\frac{8}{21}\right)e(1721)e\left(\frac{17}{21}\right)e(2342)e\left(\frac{23}{42}\right)e(1114)e\left(\frac{11}{14}\right)e(314)e\left(\frac{3}{14}\right)e(1621)e\left(\frac{16}{21}\right)e(2021)e\left(\frac{20}{21}\right)e(521)e\left(\frac{5}{21}\right)e(421)e\left(\frac{4}{21}\right)
sage: chi.jacobi_sum(n)
 
χ931(759,a)   \chi_{ 931 }(759,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ931(759,))   \tau_{ a }( \chi_{ 931 }(759,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ931(759,),χ931(n,))   J(\chi_{ 931 }(759,·),\chi_{ 931 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ931(759,))  K(a,b,\chi_{ 931 }(759,·)) \; at   a,b=\; a,b = e.g. 1,2