Properties

Label 936.181
Modulus 936936
Conductor 104104
Order 22
Real yes
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,0,1]))
 
pari: [g,chi] = znchar(Mod(181,936))
 

Basic properties

Modulus: 936936
Conductor: 104104
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ104(77,)\chi_{104}(77,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 936.m

χ936(181,)\chi_{936}(181,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(26)\Q(\sqrt{26})

Values on generators

(703,469,209,145)(703,469,209,145)(1,1,1,1)(1,-1,1,-1)

First values

aa 1-111557711111717191923232525292931313535
χ936(181,a) \chi_{ 936 }(181, a) 1111111-111111111111-11-11-1
sage: chi.jacobi_sum(n)
 
χ936(181,a)   \chi_{ 936 }(181,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ936(181,))   \tau_{ a }( \chi_{ 936 }(181,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ936(181,),χ936(n,))   J(\chi_{ 936 }(181,·),\chi_{ 936 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ936(181,))  K(a,b,\chi_{ 936 }(181,·)) \; at   a,b=\; a,b = e.g. 1,2