sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9405, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([60,0,36,20]))
pari:[g,chi] = znchar(Mod(16,9405))
χ9405(16,⋅)
χ9405(256,⋅)
χ9405(346,⋅)
χ9405(511,⋅)
χ9405(1336,⋅)
χ9405(1411,⋅)
χ9405(2821,⋅)
χ9405(3436,⋅)
χ9405(3766,⋅)
χ9405(3931,⋅)
χ9405(3976,⋅)
χ9405(4756,⋅)
χ9405(5146,⋅)
χ9405(5476,⋅)
χ9405(5641,⋅)
χ9405(6241,⋅)
χ9405(6466,⋅)
χ9405(6856,⋅)
χ9405(7186,⋅)
χ9405(7351,⋅)
χ9405(7396,⋅)
χ9405(7951,⋅)
χ9405(8176,⋅)
χ9405(9106,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(1046,1882,5986,496) → (e(32),1,e(52),e(92))
a |
−1 | 1 | 2 | 4 | 7 | 8 | 13 | 14 | 16 | 17 | 23 | 26 |
χ9405(16,a) |
1 | 1 | e(4513) | e(4526) | e(54) | e(1513) | e(4538) | e(454) | e(457) | e(4537) | e(97) | e(152) |
sage:chi.jacobi_sum(n)