Properties

Label 9405.5986
Modulus $9405$
Conductor $11$
Order $10$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9405, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,1,0]))
 
pari: [g,chi] = znchar(Mod(5986,9405))
 

Basic properties

Modulus: \(9405\)
Conductor: \(11\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{11}(2,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9405.ec

\(\chi_{9405}(1711,\cdot)\) \(\chi_{9405}(4276,\cdot)\) \(\chi_{9405}(5986,\cdot)\) \(\chi_{9405}(7696,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: \(\Q(\zeta_{11})\)

Values on generators

\((1046,1882,5986,496)\) → \((1,1,e\left(\frac{1}{10}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(23\)\(26\)
\( \chi_{ 9405 }(5986, a) \) \(-1\)\(1\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(1\)\(e\left(\frac{1}{5}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 9405 }(5986,a) \;\) at \(\;a = \) e.g. 2