Properties

Label 9405.8678
Modulus $9405$
Conductor $9405$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9405, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,27,18,14]))
 
pari: [g,chi] = znchar(Mod(8678,9405))
 

Basic properties

Modulus: \(9405\)
Conductor: \(9405\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9405.ko

\(\chi_{9405}(32,\cdot)\) \(\chi_{9405}(428,\cdot)\) \(\chi_{9405}(857,\cdot)\) \(\chi_{9405}(1022,\cdot)\) \(\chi_{9405}(1352,\cdot)\) \(\chi_{9405}(1913,\cdot)\) \(\chi_{9405}(2738,\cdot)\) \(\chi_{9405}(2903,\cdot)\) \(\chi_{9405}(3233,\cdot)\) \(\chi_{9405}(6797,\cdot)\) \(\chi_{9405}(7952,\cdot)\) \(\chi_{9405}(8678,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((1046,1882,5986,496)\) → \((e\left(\frac{1}{6}\right),-i,-1,e\left(\frac{7}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(17\)\(23\)\(26\)
\( \chi_{ 9405 }(8678, a) \) \(1\)\(1\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{11}{18}\right)\)\(i\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{31}{36}\right)\)\(e\left(\frac{5}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 9405 }(8678,a) \;\) at \(\;a = \) e.g. 2