Properties

Label 945.67
Modulus $945$
Conductor $945$
Order $36$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(945, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([16,9,24]))
 
pari: [g,chi] = znchar(Mod(67,945))
 

Basic properties

Modulus: \(945\)
Conductor: \(945\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 945.dn

\(\chi_{945}(67,\cdot)\) \(\chi_{945}(142,\cdot)\) \(\chi_{945}(193,\cdot)\) \(\chi_{945}(268,\cdot)\) \(\chi_{945}(382,\cdot)\) \(\chi_{945}(457,\cdot)\) \(\chi_{945}(508,\cdot)\) \(\chi_{945}(583,\cdot)\) \(\chi_{945}(697,\cdot)\) \(\chi_{945}(772,\cdot)\) \(\chi_{945}(823,\cdot)\) \(\chi_{945}(898,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((596,757,136)\) → \((e\left(\frac{4}{9}\right),i,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\( \chi_{ 945 }(67, a) \) \(-1\)\(1\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{11}{36}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{17}{36}\right)\)\(e\left(\frac{35}{36}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 945 }(67,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 945 }(67,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 945 }(67,·),\chi_{ 945 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 945 }(67,·)) \;\) at \(\; a,b = \) e.g. 1,2