sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(945, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([16,9,24]))
pari:[g,chi] = znchar(Mod(67,945))
Modulus: | 945 | |
Conductor: | 945 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 36 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ945(67,⋅)
χ945(142,⋅)
χ945(193,⋅)
χ945(268,⋅)
χ945(382,⋅)
χ945(457,⋅)
χ945(508,⋅)
χ945(583,⋅)
χ945(697,⋅)
χ945(772,⋅)
χ945(823,⋅)
χ945(898,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(596,757,136) → (e(94),i,e(32))
a |
−1 | 1 | 2 | 4 | 8 | 11 | 13 | 16 | 17 | 19 | 22 | 23 |
χ945(67,a) |
−1 | 1 | e(361) | e(181) | e(121) | e(94) | e(3611) | e(91) | e(127) | e(61) | e(3617) | e(3635) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)