Properties

Label 945.857
Modulus $945$
Conductor $945$
Order $36$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(945, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([14,9,6]))
 
pari: [g,chi] = znchar(Mod(857,945))
 

Basic properties

Modulus: \(945\)
Conductor: \(945\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 945.dq

\(\chi_{945}(38,\cdot)\) \(\chi_{945}(68,\cdot)\) \(\chi_{945}(227,\cdot)\) \(\chi_{945}(257,\cdot)\) \(\chi_{945}(353,\cdot)\) \(\chi_{945}(383,\cdot)\) \(\chi_{945}(542,\cdot)\) \(\chi_{945}(572,\cdot)\) \(\chi_{945}(668,\cdot)\) \(\chi_{945}(698,\cdot)\) \(\chi_{945}(857,\cdot)\) \(\chi_{945}(887,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.0.1465697146251004474650413649141163426679210854529430772252466557978101074695587158203125.1

Values on generators

\((596,757,136)\) → \((e\left(\frac{7}{18}\right),i,e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\( \chi_{ 945 }(857, a) \) \(-1\)\(1\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{8}{9}\right)\)\(i\)\(1\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{13}{36}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 945 }(857,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 945 }(857,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 945 }(857,·),\chi_{ 945 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 945 }(857,·)) \;\) at \(\; a,b = \) e.g. 1,2