sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(945, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([14,9,6]))
pari:[g,chi] = znchar(Mod(857,945))
Modulus: | 945 | |
Conductor: | 945 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 36 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ945(38,⋅)
χ945(68,⋅)
χ945(227,⋅)
χ945(257,⋅)
χ945(353,⋅)
χ945(383,⋅)
χ945(542,⋅)
χ945(572,⋅)
χ945(668,⋅)
χ945(698,⋅)
χ945(857,⋅)
χ945(887,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(596,757,136) → (e(187),i,e(61))
a |
−1 | 1 | 2 | 4 | 8 | 11 | 13 | 16 | 17 | 19 | 22 | 23 |
χ945(857,a) |
−1 | 1 | e(3635) | e(1817) | e(1211) | e(1813) | e(3613) | e(98) | i | 1 | e(3625) | e(3613) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)