Properties

Label 95.78
Modulus 9595
Conductor 9595
Order 3636
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(95, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([27,2]))
 
pari: [g,chi] = znchar(Mod(78,95))
 

Basic properties

Modulus: 9595
Conductor: 9595
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 95.r

χ95(2,)\chi_{95}(2,\cdot) χ95(3,)\chi_{95}(3,\cdot) χ95(13,)\chi_{95}(13,\cdot) χ95(22,)\chi_{95}(22,\cdot) χ95(32,)\chi_{95}(32,\cdot) χ95(33,)\chi_{95}(33,\cdot) χ95(48,)\chi_{95}(48,\cdot) χ95(52,)\chi_{95}(52,\cdot) χ95(53,)\chi_{95}(53,\cdot) χ95(67,)\chi_{95}(67,\cdot) χ95(72,)\chi_{95}(72,\cdot) χ95(78,)\chi_{95}(78,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: Q(ζ95)+\Q(\zeta_{95})^+

Values on generators

(77,21)(77,21)(i,e(118))(-i,e\left(\frac{1}{18}\right))

First values

aa 1-11122334466778899111112121313
χ95(78,a) \chi_{ 95 }(78, a) 1111e(2936)e\left(\frac{29}{36}\right)e(3536)e\left(\frac{35}{36}\right)e(1118)e\left(\frac{11}{18}\right)e(79)e\left(\frac{7}{9}\right)e(112)e\left(\frac{1}{12}\right)e(512)e\left(\frac{5}{12}\right)e(1718)e\left(\frac{17}{18}\right)e(23)e\left(\frac{2}{3}\right)e(712)e\left(\frac{7}{12}\right)e(1936)e\left(\frac{19}{36}\right)
sage: chi.jacobi_sum(n)
 
χ95(78,a)   \chi_{ 95 }(78,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ95(78,))   \tau_{ a }( \chi_{ 95 }(78,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ95(78,),χ95(n,))   J(\chi_{ 95 }(78,·),\chi_{ 95 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ95(78,))  K(a,b,\chi_{ 95 }(78,·)) \; at   a,b=\; a,b = e.g. 1,2