Properties

Label 950.63
Modulus $950$
Conductor $475$
Order $180$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(950, base_ring=CyclotomicField(180))
 
M = H._module
 
chi = DirichletCharacter(H, M([171,140]))
 
pari: [g,chi] = znchar(Mod(63,950))
 

Basic properties

Modulus: \(950\)
Conductor: \(475\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(180\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{475}(63,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 950.bj

\(\chi_{950}(17,\cdot)\) \(\chi_{950}(23,\cdot)\) \(\chi_{950}(47,\cdot)\) \(\chi_{950}(63,\cdot)\) \(\chi_{950}(73,\cdot)\) \(\chi_{950}(123,\cdot)\) \(\chi_{950}(137,\cdot)\) \(\chi_{950}(177,\cdot)\) \(\chi_{950}(187,\cdot)\) \(\chi_{950}(213,\cdot)\) \(\chi_{950}(233,\cdot)\) \(\chi_{950}(237,\cdot)\) \(\chi_{950}(253,\cdot)\) \(\chi_{950}(263,\cdot)\) \(\chi_{950}(283,\cdot)\) \(\chi_{950}(313,\cdot)\) \(\chi_{950}(327,\cdot)\) \(\chi_{950}(347,\cdot)\) \(\chi_{950}(367,\cdot)\) \(\chi_{950}(377,\cdot)\) \(\chi_{950}(397,\cdot)\) \(\chi_{950}(403,\cdot)\) \(\chi_{950}(423,\cdot)\) \(\chi_{950}(427,\cdot)\) \(\chi_{950}(453,\cdot)\) \(\chi_{950}(473,\cdot)\) \(\chi_{950}(503,\cdot)\) \(\chi_{950}(517,\cdot)\) \(\chi_{950}(537,\cdot)\) \(\chi_{950}(567,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{180})$
Fixed field: Number field defined by a degree 180 polynomial (not computed)

Values on generators

\((77,401)\) → \((e\left(\frac{19}{20}\right),e\left(\frac{7}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 950 }(63, a) \) \(-1\)\(1\)\(e\left(\frac{137}{180}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{47}{90}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{169}{180}\right)\)\(e\left(\frac{23}{180}\right)\)\(e\left(\frac{8}{45}\right)\)\(e\left(\frac{1}{180}\right)\)\(e\left(\frac{17}{60}\right)\)\(e\left(\frac{11}{90}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 950 }(63,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 950 }(63,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 950 }(63,·),\chi_{ 950 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 950 }(63,·)) \;\) at \(\; a,b = \) e.g. 1,2