Properties

Label 950.863
Modulus $950$
Conductor $475$
Order $60$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(950, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([57,10]))
 
pari: [g,chi] = znchar(Mod(863,950))
 

Basic properties

Modulus: \(950\)
Conductor: \(475\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{475}(388,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 950.bd

\(\chi_{950}(27,\cdot)\) \(\chi_{950}(103,\cdot)\) \(\chi_{950}(183,\cdot)\) \(\chi_{950}(217,\cdot)\) \(\chi_{950}(297,\cdot)\) \(\chi_{950}(373,\cdot)\) \(\chi_{950}(483,\cdot)\) \(\chi_{950}(487,\cdot)\) \(\chi_{950}(563,\cdot)\) \(\chi_{950}(597,\cdot)\) \(\chi_{950}(673,\cdot)\) \(\chi_{950}(677,\cdot)\) \(\chi_{950}(753,\cdot)\) \(\chi_{950}(787,\cdot)\) \(\chi_{950}(863,\cdot)\) \(\chi_{950}(867,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((77,401)\) → \((e\left(\frac{19}{20}\right),e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 950 }(863, a) \) \(1\)\(1\)\(e\left(\frac{49}{60}\right)\)\(-i\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{53}{60}\right)\)\(e\left(\frac{1}{60}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{47}{60}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{11}{15}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 950 }(863,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 950 }(863,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 950 }(863,·),\chi_{ 950 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 950 }(863,·)) \;\) at \(\; a,b = \) e.g. 1,2