Properties

Label 9576.1357
Modulus 95769576
Conductor 95769576
Order 66
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9576, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,4,3,1]))
 
pari: [g,chi] = znchar(Mod(1357,9576))
 

Basic properties

Modulus: 95769576
Conductor: 95769576
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 66
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9576.qt

χ9576(1357,)\chi_{9576}(1357,\cdot) χ9576(8581,)\chi_{9576}(8581,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: Number field defined by a degree 6 polynomial

Values on generators

(7183,4789,5321,4105,1009)(7183,4789,5321,4105,1009)(1,1,e(23),1,e(16))(1,-1,e\left(\frac{2}{3}\right),-1,e\left(\frac{1}{6}\right))

First values

aa 1-11155111113131717232325252929313137374141
χ9576(1357,a) \chi_{ 9576 }(1357, a) 111111e(16)e\left(\frac{1}{6}\right)e(16)e\left(\frac{1}{6}\right)e(16)e\left(\frac{1}{6}\right)e(23)e\left(\frac{2}{3}\right)1111e(13)e\left(\frac{1}{3}\right)1111
sage: chi.jacobi_sum(n)
 
χ9576(1357,a)   \chi_{ 9576 }(1357,a) \; at   a=\;a = e.g. 2