Properties

Label 9576.4247
Modulus 95769576
Conductor 15961596
Order 1818
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9576, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,0,9,15,17]))
 
pari: [g,chi] = znchar(Mod(4247,9576))
 

Basic properties

Modulus: 95769576
Conductor: 15961596
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1596(1055,)\chi_{1596}(1055,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9576.tz

χ9576(1655,)\chi_{9576}(1655,\cdot) χ9576(2663,)\chi_{9576}(2663,\cdot) χ9576(4175,)\chi_{9576}(4175,\cdot) χ9576(4247,)\chi_{9576}(4247,\cdot) χ9576(7271,)\chi_{9576}(7271,\cdot) χ9576(9287,)\chi_{9576}(9287,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 18.18.134249609415269106264907893902102008113659904.1

Values on generators

(7183,4789,5321,4105,1009)(7183,4789,5321,4105,1009)(1,1,1,e(56),e(1718))(-1,1,-1,e\left(\frac{5}{6}\right),e\left(\frac{17}{18}\right))

First values

aa 1-11155111113131717232325252929313137374141
χ9576(4247,a) \chi_{ 9576 }(4247, a) 1111e(79)e\left(\frac{7}{9}\right)e(23)e\left(\frac{2}{3}\right)e(29)e\left(\frac{2}{9}\right)e(79)e\left(\frac{7}{9}\right)e(59)e\left(\frac{5}{9}\right)e(59)e\left(\frac{5}{9}\right)e(59)e\left(\frac{5}{9}\right)1-1e(16)e\left(\frac{1}{6}\right)e(518)e\left(\frac{5}{18}\right)
sage: chi.jacobi_sum(n)
 
χ9576(4247,a)   \chi_{ 9576 }(4247,a) \; at   a=\;a = e.g. 2