Properties

Label 961.12
Modulus $961$
Conductor $961$
Order $930$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(930))
 
M = H._module
 
chi = DirichletCharacter(H, M([319]))
 
pari: [g,chi] = znchar(Mod(12,961))
 

Basic properties

Modulus: \(961\)
Conductor: \(961\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(930\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 961.p

\(\chi_{961}(3,\cdot)\) \(\chi_{961}(11,\cdot)\) \(\chi_{961}(12,\cdot)\) \(\chi_{961}(13,\cdot)\) \(\chi_{961}(17,\cdot)\) \(\chi_{961}(21,\cdot)\) \(\chi_{961}(22,\cdot)\) \(\chi_{961}(24,\cdot)\) \(\chi_{961}(34,\cdot)\) \(\chi_{961}(42,\cdot)\) \(\chi_{961}(43,\cdot)\) \(\chi_{961}(44,\cdot)\) \(\chi_{961}(48,\cdot)\) \(\chi_{961}(52,\cdot)\) \(\chi_{961}(53,\cdot)\) \(\chi_{961}(55,\cdot)\) \(\chi_{961}(65,\cdot)\) \(\chi_{961}(73,\cdot)\) \(\chi_{961}(74,\cdot)\) \(\chi_{961}(75,\cdot)\) \(\chi_{961}(79,\cdot)\) \(\chi_{961}(83,\cdot)\) \(\chi_{961}(84,\cdot)\) \(\chi_{961}(86,\cdot)\) \(\chi_{961}(96,\cdot)\) \(\chi_{961}(104,\cdot)\) \(\chi_{961}(105,\cdot)\) \(\chi_{961}(106,\cdot)\) \(\chi_{961}(110,\cdot)\) \(\chi_{961}(114,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{465})$
Fixed field: Number field defined by a degree 930 polynomial (not computed)

Values on generators

\(3\) → \(e\left(\frac{319}{930}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 961 }(12, a) \) \(-1\)\(1\)\(e\left(\frac{6}{155}\right)\)\(e\left(\frac{319}{930}\right)\)\(e\left(\frac{12}{155}\right)\)\(e\left(\frac{86}{93}\right)\)\(e\left(\frac{71}{186}\right)\)\(e\left(\frac{326}{465}\right)\)\(e\left(\frac{18}{155}\right)\)\(e\left(\frac{319}{465}\right)\)\(e\left(\frac{448}{465}\right)\)\(e\left(\frac{737}{930}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 961 }(12,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 961 }(12,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 961 }(12,·),\chi_{ 961 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 961 }(12,·)) \;\) at \(\; a,b = \) e.g. 1,2