Properties

Label 961.305
Modulus $961$
Conductor $961$
Order $186$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(961, base_ring=CyclotomicField(186))
 
M = H._module
 
chi = DirichletCharacter(H, M([49]))
 
pari: [g,chi] = znchar(Mod(305,961))
 

Basic properties

Modulus: \(961\)
Conductor: \(961\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(186\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 961.m

\(\chi_{961}(6,\cdot)\) \(\chi_{961}(26,\cdot)\) \(\chi_{961}(37,\cdot)\) \(\chi_{961}(57,\cdot)\) \(\chi_{961}(68,\cdot)\) \(\chi_{961}(88,\cdot)\) \(\chi_{961}(99,\cdot)\) \(\chi_{961}(119,\cdot)\) \(\chi_{961}(130,\cdot)\) \(\chi_{961}(150,\cdot)\) \(\chi_{961}(161,\cdot)\) \(\chi_{961}(181,\cdot)\) \(\chi_{961}(192,\cdot)\) \(\chi_{961}(212,\cdot)\) \(\chi_{961}(223,\cdot)\) \(\chi_{961}(243,\cdot)\) \(\chi_{961}(254,\cdot)\) \(\chi_{961}(274,\cdot)\) \(\chi_{961}(285,\cdot)\) \(\chi_{961}(305,\cdot)\) \(\chi_{961}(316,\cdot)\) \(\chi_{961}(336,\cdot)\) \(\chi_{961}(347,\cdot)\) \(\chi_{961}(367,\cdot)\) \(\chi_{961}(378,\cdot)\) \(\chi_{961}(398,\cdot)\) \(\chi_{961}(409,\cdot)\) \(\chi_{961}(429,\cdot)\) \(\chi_{961}(460,\cdot)\) \(\chi_{961}(471,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{93})$
Fixed field: Number field defined by a degree 186 polynomial (not computed)

Values on generators

\(3\) → \(e\left(\frac{49}{186}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 961 }(305, a) \) \(-1\)\(1\)\(e\left(\frac{12}{31}\right)\)\(e\left(\frac{49}{186}\right)\)\(e\left(\frac{24}{31}\right)\)\(e\left(\frac{85}{93}\right)\)\(e\left(\frac{121}{186}\right)\)\(e\left(\frac{32}{93}\right)\)\(e\left(\frac{5}{31}\right)\)\(e\left(\frac{49}{93}\right)\)\(e\left(\frac{28}{93}\right)\)\(e\left(\frac{17}{186}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 961 }(305,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 961 }(305,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 961 }(305,·),\chi_{ 961 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 961 }(305,·)) \;\) at \(\; a,b = \) e.g. 1,2