from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(966, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([0,11,14]))
chi.galois_orbit()
[g,chi] = znchar(Mod(13,966))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(966\) | |
Conductor: | \(161\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(22\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 161.l | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{11})\) |
Fixed field: | 22.0.3393400820453274956705986794666660343.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{966}(13,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) |
\(\chi_{966}(55,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) |
\(\chi_{966}(223,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) |
\(\chi_{966}(265,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) |
\(\chi_{966}(307,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) |
\(\chi_{966}(349,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) |
\(\chi_{966}(601,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{5}{22}\right)\) |
\(\chi_{966}(685,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) |
\(\chi_{966}(811,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{7}{22}\right)\) |
\(\chi_{966}(853,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) |