Properties

Label 967.128
Modulus 967967
Conductor 967967
Order 6969
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(967, base_ring=CyclotomicField(138))
 
M = H._module
 
chi = DirichletCharacter(H, M([98]))
 
pari: [g,chi] = znchar(Mod(128,967))
 

Basic properties

Modulus: 967967
Conductor: 967967
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 6969
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 967.k

χ967(15,)\chi_{967}(15,\cdot) χ967(39,)\chi_{967}(39,\cdot) χ967(53,)\chi_{967}(53,\cdot) χ967(61,)\chi_{967}(61,\cdot) χ967(68,)\chi_{967}(68,\cdot) χ967(73,)\chi_{967}(73,\cdot) χ967(113,)\chi_{967}(113,\cdot) χ967(124,)\chi_{967}(124,\cdot) χ967(128,)\chi_{967}(128,\cdot) χ967(129,)\chi_{967}(129,\cdot) χ967(145,)\chi_{967}(145,\cdot) χ967(190,)\chi_{967}(190,\cdot) χ967(198,)\chi_{967}(198,\cdot) χ967(202,)\chi_{967}(202,\cdot) χ967(225,)\chi_{967}(225,\cdot) χ967(241,)\chi_{967}(241,\cdot) χ967(280,)\chi_{967}(280,\cdot) χ967(321,)\chi_{967}(321,\cdot) χ967(335,)\chi_{967}(335,\cdot) χ967(341,)\chi_{967}(341,\cdot) χ967(352,)\chi_{967}(352,\cdot) χ967(377,)\chi_{967}(377,\cdot) χ967(400,)\chi_{967}(400,\cdot) χ967(421,)\chi_{967}(421,\cdot) χ967(445,)\chi_{967}(445,\cdot) χ967(494,)\chi_{967}(494,\cdot) χ967(513,)\chi_{967}(513,\cdot) χ967(524,)\chi_{967}(524,\cdot) χ967(539,)\chi_{967}(539,\cdot) χ967(554,)\chi_{967}(554,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ69)\Q(\zeta_{69})
Fixed field: Number field defined by a degree 69 polynomial

Values on generators

55e(4969)e\left(\frac{49}{69}\right)

First values

aa 1-111223344556677889910101111
χ967(128,a) \chi_{ 967 }(128, a) 1111e(4169)e\left(\frac{41}{69}\right)e(723)e\left(\frac{7}{23}\right)e(1369)e\left(\frac{13}{69}\right)e(4969)e\left(\frac{49}{69}\right)e(6269)e\left(\frac{62}{69}\right)e(4069)e\left(\frac{40}{69}\right)e(1823)e\left(\frac{18}{23}\right)e(1423)e\left(\frac{14}{23}\right)e(723)e\left(\frac{7}{23}\right)e(1423)e\left(\frac{14}{23}\right)
sage: chi.jacobi_sum(n)
 
χ967(128,a)   \chi_{ 967 }(128,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ967(128,))   \tau_{ a }( \chi_{ 967 }(128,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ967(128,),χ967(n,))   J(\chi_{ 967 }(128,·),\chi_{ 967 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ967(128,))  K(a,b,\chi_{ 967 }(128,·)) \; at   a,b=\; a,b = e.g. 1,2