from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(967, base_ring=CyclotomicField(138))
M = H._module
chi = DirichletCharacter(H, M([98]))
pari: [g,chi] = znchar(Mod(128,967))
χ967(15,⋅)
χ967(39,⋅)
χ967(53,⋅)
χ967(61,⋅)
χ967(68,⋅)
χ967(73,⋅)
χ967(113,⋅)
χ967(124,⋅)
χ967(128,⋅)
χ967(129,⋅)
χ967(145,⋅)
χ967(190,⋅)
χ967(198,⋅)
χ967(202,⋅)
χ967(225,⋅)
χ967(241,⋅)
χ967(280,⋅)
χ967(321,⋅)
χ967(335,⋅)
χ967(341,⋅)
χ967(352,⋅)
χ967(377,⋅)
χ967(400,⋅)
χ967(421,⋅)
χ967(445,⋅)
χ967(494,⋅)
χ967(513,⋅)
χ967(524,⋅)
χ967(539,⋅)
χ967(554,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
5 → e(6949)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ967(128,a) |
1 | 1 | e(6941) | e(237) | e(6913) | e(6949) | e(6962) | e(6940) | e(2318) | e(2314) | e(237) | e(2314) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)