from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(967, base_ring=CyclotomicField(966))
M = H._module
chi = DirichletCharacter(H, M([605]))
pari: [g,chi] = znchar(Mod(19,967))
χ967(5,⋅)
χ967(6,⋅)
χ967(7,⋅)
χ967(12,⋅)
χ967(13,⋅)
χ967(19,⋅)
χ967(28,⋅)
χ967(37,⋅)
χ967(38,⋅)
χ967(40,⋅)
χ967(43,⋅)
χ967(45,⋅)
χ967(46,⋅)
χ967(47,⋅)
χ967(48,⋅)
χ967(56,⋅)
χ967(58,⋅)
χ967(63,⋅)
χ967(66,⋅)
χ967(75,⋅)
χ967(77,⋅)
χ967(79,⋅)
χ967(82,⋅)
χ967(85,⋅)
χ967(86,⋅)
χ967(89,⋅)
χ967(102,⋅)
χ967(104,⋅)
χ967(105,⋅)
χ967(107,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
5 → e(966605)
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ967(19,a) |
−1 | 1 | e(483113) | e(322139) | e(483226) | e(966605) | e(966643) | e(966929) | e(161113) | e(161139) | e(322277) | e(16124) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)