Properties

Label 967.19
Modulus 967967
Conductor 967967
Order 966966
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(967, base_ring=CyclotomicField(966))
 
M = H._module
 
chi = DirichletCharacter(H, M([605]))
 
pari: [g,chi] = znchar(Mod(19,967))
 

Basic properties

Modulus: 967967
Conductor: 967967
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 966966
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 967.p

χ967(5,)\chi_{967}(5,\cdot) χ967(6,)\chi_{967}(6,\cdot) χ967(7,)\chi_{967}(7,\cdot) χ967(12,)\chi_{967}(12,\cdot) χ967(13,)\chi_{967}(13,\cdot) χ967(19,)\chi_{967}(19,\cdot) χ967(28,)\chi_{967}(28,\cdot) χ967(37,)\chi_{967}(37,\cdot) χ967(38,)\chi_{967}(38,\cdot) χ967(40,)\chi_{967}(40,\cdot) χ967(43,)\chi_{967}(43,\cdot) χ967(45,)\chi_{967}(45,\cdot) χ967(46,)\chi_{967}(46,\cdot) χ967(47,)\chi_{967}(47,\cdot) χ967(48,)\chi_{967}(48,\cdot) χ967(56,)\chi_{967}(56,\cdot) χ967(58,)\chi_{967}(58,\cdot) χ967(63,)\chi_{967}(63,\cdot) χ967(66,)\chi_{967}(66,\cdot) χ967(75,)\chi_{967}(75,\cdot) χ967(77,)\chi_{967}(77,\cdot) χ967(79,)\chi_{967}(79,\cdot) χ967(82,)\chi_{967}(82,\cdot) χ967(85,)\chi_{967}(85,\cdot) χ967(86,)\chi_{967}(86,\cdot) χ967(89,)\chi_{967}(89,\cdot) χ967(102,)\chi_{967}(102,\cdot) χ967(104,)\chi_{967}(104,\cdot) χ967(105,)\chi_{967}(105,\cdot) χ967(107,)\chi_{967}(107,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ483)\Q(\zeta_{483})
Fixed field: Number field defined by a degree 966 polynomial (not computed)

Values on generators

55e(605966)e\left(\frac{605}{966}\right)

First values

aa 1-111223344556677889910101111
χ967(19,a) \chi_{ 967 }(19, a) 1-111e(113483)e\left(\frac{113}{483}\right)e(139322)e\left(\frac{139}{322}\right)e(226483)e\left(\frac{226}{483}\right)e(605966)e\left(\frac{605}{966}\right)e(643966)e\left(\frac{643}{966}\right)e(929966)e\left(\frac{929}{966}\right)e(113161)e\left(\frac{113}{161}\right)e(139161)e\left(\frac{139}{161}\right)e(277322)e\left(\frac{277}{322}\right)e(24161)e\left(\frac{24}{161}\right)
sage: chi.jacobi_sum(n)
 
χ967(19,a)   \chi_{ 967 }(19,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ967(19,))   \tau_{ a }( \chi_{ 967 }(19,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ967(19,),χ967(n,))   J(\chi_{ 967 }(19,·),\chi_{ 967 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ967(19,))  K(a,b,\chi_{ 967 }(19,·)) \; at   a,b=\; a,b = e.g. 1,2