sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9680, base_ring=CyclotomicField(220))
M = H._module
chi = DirichletCharacter(H, M([0,165,110,128]))
pari:[g,chi] = znchar(Mod(2029,9680))
Modulus: | 9680 | |
Conductor: | 9680 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 220 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ9680(69,⋅)
χ9680(229,⋅)
χ9680(389,⋅)
χ9680(509,⋅)
χ9680(669,⋅)
χ9680(709,⋅)
χ9680(829,⋅)
χ9680(949,⋅)
χ9680(1109,⋅)
χ9680(1149,⋅)
χ9680(1269,⋅)
χ9680(1389,⋅)
χ9680(1549,⋅)
χ9680(1589,⋅)
χ9680(1709,⋅)
χ9680(1829,⋅)
χ9680(1989,⋅)
χ9680(2029,⋅)
χ9680(2149,⋅)
χ9680(2269,⋅)
χ9680(2469,⋅)
χ9680(2589,⋅)
χ9680(2709,⋅)
χ9680(2869,⋅)
χ9680(2909,⋅)
χ9680(3029,⋅)
χ9680(3309,⋅)
χ9680(3349,⋅)
χ9680(3589,⋅)
χ9680(3749,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3631,2421,1937,4721) → (1,−i,−1,e(5532))
a |
−1 | 1 | 3 | 7 | 9 | 13 | 17 | 19 | 21 | 23 | 27 | 29 |
χ9680(2029,a) |
1 | 1 | e(2019) | e(554) | e(109) | e(220113) | e(1101) | e(220119) | e(441) | e(118) | e(2017) | e(22031) |
sage:chi.jacobi_sum(n)