Properties

Label 9680.2029
Modulus 96809680
Conductor 96809680
Order 220220
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9680, base_ring=CyclotomicField(220)) M = H._module chi = DirichletCharacter(H, M([0,165,110,128]))
 
Copy content pari:[g,chi] = znchar(Mod(2029,9680))
 

Basic properties

Modulus: 96809680
Conductor: 96809680
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 220220
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9680.fw

χ9680(69,)\chi_{9680}(69,\cdot) χ9680(229,)\chi_{9680}(229,\cdot) χ9680(389,)\chi_{9680}(389,\cdot) χ9680(509,)\chi_{9680}(509,\cdot) χ9680(669,)\chi_{9680}(669,\cdot) χ9680(709,)\chi_{9680}(709,\cdot) χ9680(829,)\chi_{9680}(829,\cdot) χ9680(949,)\chi_{9680}(949,\cdot) χ9680(1109,)\chi_{9680}(1109,\cdot) χ9680(1149,)\chi_{9680}(1149,\cdot) χ9680(1269,)\chi_{9680}(1269,\cdot) χ9680(1389,)\chi_{9680}(1389,\cdot) χ9680(1549,)\chi_{9680}(1549,\cdot) χ9680(1589,)\chi_{9680}(1589,\cdot) χ9680(1709,)\chi_{9680}(1709,\cdot) χ9680(1829,)\chi_{9680}(1829,\cdot) χ9680(1989,)\chi_{9680}(1989,\cdot) χ9680(2029,)\chi_{9680}(2029,\cdot) χ9680(2149,)\chi_{9680}(2149,\cdot) χ9680(2269,)\chi_{9680}(2269,\cdot) χ9680(2469,)\chi_{9680}(2469,\cdot) χ9680(2589,)\chi_{9680}(2589,\cdot) χ9680(2709,)\chi_{9680}(2709,\cdot) χ9680(2869,)\chi_{9680}(2869,\cdot) χ9680(2909,)\chi_{9680}(2909,\cdot) χ9680(3029,)\chi_{9680}(3029,\cdot) χ9680(3309,)\chi_{9680}(3309,\cdot) χ9680(3349,)\chi_{9680}(3349,\cdot) χ9680(3589,)\chi_{9680}(3589,\cdot) χ9680(3749,)\chi_{9680}(3749,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ220)\Q(\zeta_{220})
Fixed field: Number field defined by a degree 220 polynomial (not computed)

Values on generators

(3631,2421,1937,4721)(3631,2421,1937,4721)(1,i,1,e(3255))(1,-i,-1,e\left(\frac{32}{55}\right))

First values

aa 1-1113377991313171719192121232327272929
χ9680(2029,a) \chi_{ 9680 }(2029, a) 1111e(1920)e\left(\frac{19}{20}\right)e(455)e\left(\frac{4}{55}\right)e(910)e\left(\frac{9}{10}\right)e(113220)e\left(\frac{113}{220}\right)e(1110)e\left(\frac{1}{110}\right)e(119220)e\left(\frac{119}{220}\right)e(144)e\left(\frac{1}{44}\right)e(811)e\left(\frac{8}{11}\right)e(1720)e\left(\frac{17}{20}\right)e(31220)e\left(\frac{31}{220}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ9680(2029,a)   \chi_{ 9680 }(2029,a) \; at   a=\;a = e.g. 2