Properties

Label 9680.3673
Modulus $9680$
Conductor $4840$
Order $44$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9680, base_ring=CyclotomicField(44))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,22,33,10]))
 
pari: [g,chi] = znchar(Mod(3673,9680))
 

Basic properties

Modulus: \(9680\)
Conductor: \(4840\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(44\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4840}(1253,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9680.ee

\(\chi_{9680}(153,\cdot)\) \(\chi_{9680}(857,\cdot)\) \(\chi_{9680}(1033,\cdot)\) \(\chi_{9680}(1737,\cdot)\) \(\chi_{9680}(1913,\cdot)\) \(\chi_{9680}(2617,\cdot)\) \(\chi_{9680}(2793,\cdot)\) \(\chi_{9680}(3497,\cdot)\) \(\chi_{9680}(3673,\cdot)\) \(\chi_{9680}(4377,\cdot)\) \(\chi_{9680}(4553,\cdot)\) \(\chi_{9680}(5257,\cdot)\) \(\chi_{9680}(5433,\cdot)\) \(\chi_{9680}(6137,\cdot)\) \(\chi_{9680}(6313,\cdot)\) \(\chi_{9680}(7193,\cdot)\) \(\chi_{9680}(7897,\cdot)\) \(\chi_{9680}(8073,\cdot)\) \(\chi_{9680}(8777,\cdot)\) \(\chi_{9680}(9657,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: 44.44.212907048724487789150739362720525788138562346514417698933058002742934795048229975182497632223232000000000000000000000000000000000.1

Values on generators

\((3631,2421,1937,4721)\) → \((1,-1,-i,e\left(\frac{5}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 9680 }(3673, a) \) \(1\)\(1\)\(-i\)\(e\left(\frac{15}{44}\right)\)\(-1\)\(e\left(\frac{31}{44}\right)\)\(e\left(\frac{39}{44}\right)\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{7}{44}\right)\)\(i\)\(e\left(\frac{19}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 9680 }(3673,a) \;\) at \(\;a = \) e.g. 2