sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(9680, base_ring=CyclotomicField(220))
M = H._module
chi = DirichletCharacter(H, M([0,55,165,6]))
pari:[g,chi] = znchar(Mod(613,9680))
Modulus: | 9680 | |
Conductor: | 9680 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 220 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ9680(237,⋅)
χ9680(293,⋅)
χ9680(453,⋅)
χ9680(557,⋅)
χ9680(613,⋅)
χ9680(853,⋅)
χ9680(877,⋅)
χ9680(1117,⋅)
χ9680(1173,⋅)
χ9680(1333,⋅)
χ9680(1437,⋅)
χ9680(1493,⋅)
χ9680(1597,⋅)
χ9680(1733,⋅)
χ9680(1757,⋅)
χ9680(1997,⋅)
χ9680(2053,⋅)
χ9680(2213,⋅)
χ9680(2317,⋅)
χ9680(2373,⋅)
χ9680(2477,⋅)
χ9680(2613,⋅)
χ9680(2637,⋅)
χ9680(2933,⋅)
χ9680(3093,⋅)
χ9680(3197,⋅)
χ9680(3253,⋅)
χ9680(3357,⋅)
χ9680(3493,⋅)
χ9680(3517,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3631,2421,1937,4721) → (1,i,−i,e(1103))
a |
−1 | 1 | 3 | 7 | 9 | 13 | 17 | 19 | 21 | 23 | 27 | 29 |
χ9680(613,a) |
1 | 1 | e(52) | e(22097) | e(54) | e(11083) | e(22019) | e(220113) | e(4437) | e(4429) | e(51) | e(220157) |
sage:chi.jacobi_sum(n)