Properties

Label 9680.613
Modulus 96809680
Conductor 96809680
Order 220220
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9680, base_ring=CyclotomicField(220)) M = H._module chi = DirichletCharacter(H, M([0,55,165,6]))
 
Copy content pari:[g,chi] = znchar(Mod(613,9680))
 

Basic properties

Modulus: 96809680
Conductor: 96809680
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 220220
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 9680.fh

χ9680(237,)\chi_{9680}(237,\cdot) χ9680(293,)\chi_{9680}(293,\cdot) χ9680(453,)\chi_{9680}(453,\cdot) χ9680(557,)\chi_{9680}(557,\cdot) χ9680(613,)\chi_{9680}(613,\cdot) χ9680(853,)\chi_{9680}(853,\cdot) χ9680(877,)\chi_{9680}(877,\cdot) χ9680(1117,)\chi_{9680}(1117,\cdot) χ9680(1173,)\chi_{9680}(1173,\cdot) χ9680(1333,)\chi_{9680}(1333,\cdot) χ9680(1437,)\chi_{9680}(1437,\cdot) χ9680(1493,)\chi_{9680}(1493,\cdot) χ9680(1597,)\chi_{9680}(1597,\cdot) χ9680(1733,)\chi_{9680}(1733,\cdot) χ9680(1757,)\chi_{9680}(1757,\cdot) χ9680(1997,)\chi_{9680}(1997,\cdot) χ9680(2053,)\chi_{9680}(2053,\cdot) χ9680(2213,)\chi_{9680}(2213,\cdot) χ9680(2317,)\chi_{9680}(2317,\cdot) χ9680(2373,)\chi_{9680}(2373,\cdot) χ9680(2477,)\chi_{9680}(2477,\cdot) χ9680(2613,)\chi_{9680}(2613,\cdot) χ9680(2637,)\chi_{9680}(2637,\cdot) χ9680(2933,)\chi_{9680}(2933,\cdot) χ9680(3093,)\chi_{9680}(3093,\cdot) χ9680(3197,)\chi_{9680}(3197,\cdot) χ9680(3253,)\chi_{9680}(3253,\cdot) χ9680(3357,)\chi_{9680}(3357,\cdot) χ9680(3493,)\chi_{9680}(3493,\cdot) χ9680(3517,)\chi_{9680}(3517,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ220)\Q(\zeta_{220})
Fixed field: Number field defined by a degree 220 polynomial (not computed)

Values on generators

(3631,2421,1937,4721)(3631,2421,1937,4721)(1,i,i,e(3110))(1,i,-i,e\left(\frac{3}{110}\right))

First values

aa 1-1113377991313171719192121232327272929
χ9680(613,a) \chi_{ 9680 }(613, a) 1111e(25)e\left(\frac{2}{5}\right)e(97220)e\left(\frac{97}{220}\right)e(45)e\left(\frac{4}{5}\right)e(83110)e\left(\frac{83}{110}\right)e(19220)e\left(\frac{19}{220}\right)e(113220)e\left(\frac{113}{220}\right)e(3744)e\left(\frac{37}{44}\right)e(2944)e\left(\frac{29}{44}\right)e(15)e\left(\frac{1}{5}\right)e(157220)e\left(\frac{157}{220}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ9680(613,a)   \chi_{ 9680 }(613,a) \; at   a=\;a = e.g. 2