Properties

Label 9680.749
Modulus $9680$
Conductor $9680$
Order $44$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9680, base_ring=CyclotomicField(44))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,33,22,28]))
 
pari: [g,chi] = znchar(Mod(749,9680))
 

Basic properties

Modulus: \(9680\)
Conductor: \(9680\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(44\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9680.dy

\(\chi_{9680}(309,\cdot)\) \(\chi_{9680}(749,\cdot)\) \(\chi_{9680}(1189,\cdot)\) \(\chi_{9680}(1629,\cdot)\) \(\chi_{9680}(2069,\cdot)\) \(\chi_{9680}(2509,\cdot)\) \(\chi_{9680}(2949,\cdot)\) \(\chi_{9680}(3829,\cdot)\) \(\chi_{9680}(4269,\cdot)\) \(\chi_{9680}(4709,\cdot)\) \(\chi_{9680}(5149,\cdot)\) \(\chi_{9680}(5589,\cdot)\) \(\chi_{9680}(6029,\cdot)\) \(\chi_{9680}(6469,\cdot)\) \(\chi_{9680}(6909,\cdot)\) \(\chi_{9680}(7349,\cdot)\) \(\chi_{9680}(7789,\cdot)\) \(\chi_{9680}(8669,\cdot)\) \(\chi_{9680}(9109,\cdot)\) \(\chi_{9680}(9549,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: Number field defined by a degree 44 polynomial

Values on generators

\((3631,2421,1937,4721)\) → \((1,-i,-1,e\left(\frac{7}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 9680 }(749, a) \) \(1\)\(1\)\(-i\)\(e\left(\frac{5}{11}\right)\)\(-1\)\(e\left(\frac{1}{44}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{3}{44}\right)\)\(e\left(\frac{9}{44}\right)\)\(e\left(\frac{6}{11}\right)\)\(i\)\(e\left(\frac{3}{44}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 9680 }(749,a) \;\) at \(\;a = \) e.g. 2