Properties

Label 9680.7569
Modulus $9680$
Conductor $605$
Order $22$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9680, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,11,20]))
 
pari: [g,chi] = znchar(Mod(7569,9680))
 

Basic properties

Modulus: \(9680\)
Conductor: \(605\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{605}(309,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 9680.dk

\(\chi_{9680}(529,\cdot)\) \(\chi_{9680}(1409,\cdot)\) \(\chi_{9680}(2289,\cdot)\) \(\chi_{9680}(3169,\cdot)\) \(\chi_{9680}(4049,\cdot)\) \(\chi_{9680}(4929,\cdot)\) \(\chi_{9680}(6689,\cdot)\) \(\chi_{9680}(7569,\cdot)\) \(\chi_{9680}(8449,\cdot)\) \(\chi_{9680}(9329,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\((3631,2421,1937,4721)\) → \((1,1,-1,e\left(\frac{10}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 9680 }(7569, a) \) \(1\)\(1\)\(-1\)\(e\left(\frac{19}{22}\right)\)\(1\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{3}{22}\right)\)\(-1\)\(e\left(\frac{5}{11}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 9680 }(7569,a) \;\) at \(\;a = \) e.g. 2