Properties

Label 980.bd
Modulus $980$
Conductor $245$
Order $14$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(980, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,7,6]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(29,980))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(980\)
Conductor: \(245\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 245.p
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: Number field defined by a degree 14 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(9\) \(11\) \(13\) \(17\) \(19\) \(23\) \(27\) \(29\) \(31\)
\(\chi_{980}(29,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(1\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(1\)
\(\chi_{980}(169,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{2}{7}\right)\) \(1\)
\(\chi_{980}(309,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(1\)
\(\chi_{980}(449,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(1\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{3}{7}\right)\) \(1\)
\(\chi_{980}(729,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(1\)
\(\chi_{980}(869,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(1\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{1}{7}\right)\) \(1\)