Properties

Label 2.0.23.1-108.6-b3
Base field \(\Q(\sqrt{-23}) \)
Conductor norm \( 108 \)
CM no
Base change no
Q-curve yes
Torsion order \( 4 \)
Rank \( 1 \)

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field \(\Q(\sqrt{-23}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 6 \); class number \(3\).

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([6, -1, 1]))
 
gp: K = nfinit(Polrev([6, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6, -1, 1]);
 

Weierstrass equation

\({y}^2+a{x}{y}={x}^3+a{x}^2+\left(-3a+54\right){x}-43a+10\)
sage: E = EllipticCurve([K([0,1]),K([0,1]),K([0,0]),K([54,-3]),K([10,-43])])
 
gp: E = ellinit([Polrev([0,1]),Polrev([0,1]),Polrev([0,0]),Polrev([54,-3]),Polrev([10,-43])], K);
 
magma: E := EllipticCurve([K![0,1],K![0,1],K![0,0],K![54,-3],K![10,-43]]);
 

This is not a global minimal model: it is minimal at all primes except \((2,a)\). No global minimal model exists.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(2 : -3 a + 12 : 1\right)$$0.13693264060765609071667196155970425318$$\infty$
$\left(-4 a + 2 : a - 12 : 1\right)$$0$$2$
$\left(a - 1 : 3 : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((18,6a)\) = \((2,a)\cdot(2,a+1)\cdot(3,a)^{2}\cdot(3,a+2)\)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 108 \) = \(2\cdot2\cdot3^{2}\cdot3\)
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: $\Delta$ = $1229904a-147744$
Discriminant ideal: $(\Delta)$ = \((1229904a-147744)\) = \((2,a)^{20}\cdot(2,a+1)^{4}\cdot(3,a)^{8}\cdot(3,a+2)^{4}\)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: $N(\Delta)$ = \( 8916100448256 \) = \(2^{20}\cdot2^{4}\cdot3^{8}\cdot3^{4}\)
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
Minimal discriminant: $\frak{D}_{\mathrm{min}}$ = \((-14256a+38880)\) = \((2,a)^{8}\cdot(2,a+1)^{4}\cdot(3,a)^{8}\cdot(3,a+2)^{4}\)
Minimal discriminant norm: $N(\frak{D}_{\mathrm{min}})$ = \( 2176782336 \) = \(2^{8}\cdot2^{4}\cdot3^{8}\cdot3^{4}\)
j-invariant: $j$ = \( \frac{54256267}{20736} a - \frac{3034703}{6912} \)
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: $r$ = \(1\)
Regulator: $\mathrm{Reg}(E/K)$ \( 0.13693264060765609071667196155970425318 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ \( 0.273865281215312181433343923119408506360 \)
Global period: $\Omega(E/K)$ \( 4.2631400829787424910520982906442720882 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 128 \)  =  \(2^{3}\cdot2\cdot2^{2}\cdot2\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(4\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.9475680945168386727622166971056384619 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 1 \) (rounded)

BSD formula

$\displaystyle 1.947568095 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 4.263140 \cdot 0.273865 \cdot 128 } { {4^2 \cdot 4.795832} } \approx 1.947568095$

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2,a)\) \(2\) \(8\) \(I_{8}\) Split multiplicative \(-1\) \(1\) \(8\) \(8\)
\((2,a+1)\) \(2\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)
\((3,a)\) \(3\) \(4\) \(I_{2}^{*}\) Additive \(-1\) \(2\) \(8\) \(2\)
\((3,a+2)\) \(3\) \(2\) \(I_{4}\) Non-split multiplicative \(1\) \(1\) \(4\) \(4\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2 and 4.
Its isogeny class 108.6-b consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.