Generator a, with minimal polynomial
x2−x+1; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp:K = nfinit(Polrev([1, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
y2=x3+(a+1)x2+(a+3)x+3a
sage:E = EllipticCurve([K([0,0]),K([1,1]),K([0,0]),K([3,1]),K([0,3])])
gp:E = ellinit([Polrev([0,0]),Polrev([1,1]),Polrev([0,0]),Polrev([3,1]),Polrev([0,3])], K);
magma:E := EllipticCurve([K![0,0],K![1,1],K![0,0],K![3,1],K![0,3]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z⊕Z/2Z
P | h^(P) | Order |
(0:a+1:1) | 0.73499280783000833513027721821155691386 | ∞ |
(−a:0:1) | 0 | 2 |
Conductor: |
N |
= |
(352) |
= |
(2)5⋅(11) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
123904 |
= |
45⋅121 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
−704 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(−704) |
= |
(2)6⋅(11) |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
495616 |
= |
46⋅121 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
1146656 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
1
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
1 |
Regulator:
|
Reg(E/K) |
≈ |
0.73499280783000833513027721821155691386
|
Néron-Tate Regulator:
|
RegNT(E/K) |
≈ |
1.46998561566001667026055443642311382772
|
Global period: |
Ω(E/K) | ≈ |
8.8203984260625762963444875990081730764 |
Tamagawa product: |
∏pcp | = |
2
= 2⋅1
|
Torsion order: |
#E(K)tor | = |
2 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 3.7429210373168091095771689739145011583 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
3.742921037≈L′(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈22⋅1.7320511⋅8.820398⋅1.469986⋅2≈3.742921037
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 2 primes p
of bad reduction.
This elliptic curve is a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.