Generator a, with minimal polynomial
x2−x+1; class number 1.
sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
gp:K = nfinit(Polrev([1, -1, 1]));
magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
y2+xy+ay=x3+(−a−1)x2+(−359a+448)x+117a−2482
sage:E = EllipticCurve([K([1,0]),K([-1,-1]),K([0,1]),K([448,-359]),K([-2482,117])])
gp:E = ellinit([Polrev([1,0]),Polrev([-1,-1]),Polrev([0,1]),Polrev([448,-359]),Polrev([-2482,117])], K);
magma:E := EllipticCurve([K![1,0],K![-1,-1],K![0,1],K![448,-359],K![-2482,117]]);
This is a global minimal model.
sage:E.is_global_minimal_model()
Z⊕Z/2Z⊕Z/2Z
P | h^(P) | Order |
(−16a−33:−311a+286:1) | 0.64464081968558465631832258086038608252 | ∞ |
(−23a+2:11a−1:1) | 0 | 2 |
(5a+2:−3a−1:1) | 0 | 2 |
Conductor: |
N |
= |
(−392a+49) |
= |
(−2a+1)⋅(−3a+1)2⋅(3a−2)2⋅(−5a+3) |
sage:E.conductor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
|
Conductor norm: |
N(N) |
= |
136857 |
= |
3⋅72⋅72⋅19 |
sage:E.conductor().norm()
gp:idealnorm(ellglobalred(E)[1])
magma:Norm(Conductor(E));
|
Discriminant: |
Δ |
= |
2855694177a+193767903 |
Discriminant ideal:
|
Dmin=(Δ)
|
= |
(2855694177a+193767903) |
= |
(−2a+1)6⋅(−3a+1)6⋅(3a−2)10⋅(−5a+3)2 |
sage:E.discriminant()
gp:E.disc
magma:Discriminant(E);
|
Discriminant norm:
|
N(Dmin)=N(Δ)
|
= |
8745877105071325569 |
= |
36⋅76⋅710⋅192 |
sage:E.discriminant().norm()
gp:norm(E.disc)
magma:Norm(Discriminant(E));
|
j-invariant: |
j |
= |
−2340254728971353771a+780084923274207584 |
sage:E.j_invariant()
gp:E.j
magma:jInvariant(E);
|
Endomorphism ring: |
End(E) |
= |
Z
|
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm(), E.cm_discriminant()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) |
= |
SU(2) |
Analytic rank: |
ran | = |
1
|
sage:E.rank()
magma:Rank(E);
|
Mordell-Weil rank: |
r |
= |
1 |
Regulator:
|
Reg(E/K) |
≈ |
0.64464081968558465631832258086038608252
|
Néron-Tate Regulator:
|
RegNT(E/K) |
≈ |
1.28928163937116931263664516172077216504
|
Global period: |
Ω(E/K) | ≈ |
0.710173400857236464901133312800346587840 |
Tamagawa product: |
∏pcp | = |
192
= (2⋅3)⋅22⋅22⋅2
|
Torsion order: |
#E(K)tor | = |
4 |
Special value: |
L(r)(E/K,1)/r! |
≈ | 6.3435565919467231800220834450581073718 |
Analytic order of Ш:
|
Шan | = |
1 (rounded) |
6.343556592≈L′(E/K,1)=?#E(K)tor2⋅∣dK∣1/2#Ш(E/K)⋅Ω(E/K)⋅RegNT(E/K)⋅∏pcp≈42⋅1.7320511⋅0.710173⋅1.289282⋅192≈6.343556592
sage:E.local_data()
magma:LocalInformation(E);
This elliptic curve is not semistable.
There
are 4 primes p
of bad reduction.
This curve has non-trivial cyclic isogenies of degree d for d=
2 and 4.
Its isogeny class
136857.5-f
consists of curves linked by isogenies of
degrees dividing 8.
This elliptic curve is not a Q-curve.
It is not the base change of an elliptic curve defined over any subfield.