Properties

Label 2.0.3.1-136857.5-f4
Base field Q(3)\Q(\sqrt{-3})
Conductor norm 136857 136857
CM no
Base change no
Q-curve no
Torsion order 4 4
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(3)\Q(\sqrt{-3})

Generator aa, with minimal polynomial x2x+1 x^{2} - x + 1 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

y2+xy+ay=x3+(a1)x2+(359a+448)x+117a2482{y}^2+{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-359a+448\right){x}+117a-2482
sage: E = EllipticCurve([K([1,0]),K([-1,-1]),K([0,1]),K([448,-359]),K([-2482,117])])
 
gp: E = ellinit([Polrev([1,0]),Polrev([-1,-1]),Polrev([0,1]),Polrev([448,-359]),Polrev([-2482,117])], K);
 
magma: E := EllipticCurve([K![1,0],K![-1,-1],K![0,1],K![448,-359],K![-2482,117]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2ZZ/2Z\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(16a33:311a+286:1)\left(-16 a - 33 : -311 a + 286 : 1\right)0.644640819685584656318322580860386082520.64464081968558465631832258086038608252\infty
(23a+2:11a1:1)\left(-23 a + 2 : 11 a - 1 : 1\right)0022
(5a+2:3a1:1)\left(5 a + 2 : -3 a - 1 : 1\right)0022

Invariants

Conductor: N\frak{N} = (392a+49)(-392a+49) = (2a+1)(3a+1)2(3a2)2(5a+3)(-2a+1)\cdot(-3a+1)^{2}\cdot(3a-2)^{2}\cdot(-5a+3)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 136857 136857 = 37272193\cdot7^{2}\cdot7^{2}\cdot19
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 2855694177a+1937679032855694177a+193767903
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (2855694177a+193767903)(2855694177a+193767903) = (2a+1)6(3a+1)6(3a2)10(5a+3)2(-2a+1)^{6}\cdot(-3a+1)^{6}\cdot(3a-2)^{10}\cdot(-5a+3)^{2}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 8745877105071325569 8745877105071325569 = 36767101923^{6}\cdot7^{6}\cdot7^{10}\cdot19^{2}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 2897135377123402547a+232742075847800849 -\frac{28971353771}{23402547} a + \frac{23274207584}{7800849}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.64464081968558465631832258086038608252 0.64464081968558465631832258086038608252
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 1.28928163937116931263664516172077216504 1.28928163937116931263664516172077216504
Global period: Ω(E/K)\Omega(E/K) 0.710173400857236464901133312800346587840 0.710173400857236464901133312800346587840
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 192 192  =  (23)22222( 2 \cdot 3 )\cdot2^{2}\cdot2^{2}\cdot2
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 44
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 6.3435565919467231800220834450581073718 6.3435565919467231800220834450581073718
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

6.343556592L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/210.7101731.289282192421.7320516.343556592\displaystyle 6.343556592 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 0.710173 \cdot 1.289282 \cdot 192 } { {4^2 \cdot 1.732051} } \approx 6.343556592

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(2a+1)(-2a+1) 33 66 I6I_{6} Split multiplicative 1-1 11 66 66
(3a+1)(-3a+1) 77 44 I0I_0^{*} Additive 1-1 22 66 00
(3a2)(3a-2) 77 44 I4I_{4}^{*} Additive 1-1 22 1010 44
(5a+3)(-5a+3) 1919 22 I2I_{2} Split multiplicative 1-1 11 22 22

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2Cs

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2 and 4.
Its isogeny class 136857.5-f consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.