Properties

Label 2.0.3.1-37632.2-g6
Base field Q(3)\Q(\sqrt{-3})
Conductor norm 37632 37632
CM no
Base change yes
Q-curve yes
Torsion order 2 2
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(3)\Q(\sqrt{-3})

Generator aa, with minimal polynomial x2x+1 x^{2} - x + 1 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

y2=x3x2152x672{y}^2={x}^{3}-{x}^{2}-152{x}-672
sage: E = EllipticCurve([K([0,0]),K([-1,0]),K([0,0]),K([-152,0]),K([-672,0])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,0]),Polrev([0,0]),Polrev([-152,0]),Polrev([-672,0])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,0],K![0,0],K![-152,0],K![-672,0]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

ZZ/2Z\Z \oplus \Z/{2}\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(6:4a+2:1)\left(-6 : -4 a + 2 : 1\right)0.688154321642412780236711610996640171930.68815432164241278023671161099664017193\infty
(7:0:1)\left(-7 : 0 : 1\right)0022

Invariants

Conductor: N\frak{N} = (224a+112)(-224a+112) = (2a+1)(2)4(3a+1)(3a2)(-2a+1)\cdot(2)^{4}\cdot(-3a+1)\cdot(3a-2)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 37632 37632 = 344773\cdot4^{4}\cdot7\cdot7
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 580608580608
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (580608)(580608) = (2a+1)8(2)10(3a+1)(3a2)(-2a+1)^{8}\cdot(2)^{10}\cdot(-3a+1)\cdot(3a-2)
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 337105649664 337105649664 = 38410773^{8}\cdot4^{10}\cdot7\cdot7
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 381775972567 \frac{381775972}{567}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.68815432164241278023671161099664017193 0.68815432164241278023671161099664017193
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 1.37630864328482556047342322199328034386 1.37630864328482556047342322199328034386
Global period: Ω(E/K)\Omega(E/K) 1.97235683460469410177459099558257460262 1.97235683460469410177459099558257460262
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 8 8  =  222112\cdot2^{2}\cdot1\cdot1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 22
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 3.1345174717115116515199208353111505321 3.1345174717115116515199208353111505321
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

3.134517472L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/211.9723571.3763098221.7320513.134517472\displaystyle 3.134517472 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 1.972357 \cdot 1.376309 \cdot 8 } { {2^2 \cdot 1.732051} } \approx 3.134517472

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 4 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(2a+1)(-2a+1) 33 22 I8I_{8} Non-split multiplicative 11 11 88 88
(2)(2) 44 44 I2I_{2}^{*} Additive 11 44 1010 00
(3a+1)(-3a+1) 77 11 I1I_{1} Split multiplicative 1-1 11 11 11
(3a2)(3a-2) 77 11 I1I_{1} Split multiplicative 1-1 11 11 11

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
22 2B

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 37632.2-g consists of curves linked by isogenies of degrees dividing 8.

Base change

This elliptic curve is a Q\Q-curve. It is the base change of the following 2 elliptic curves:

Base field Curve
Q\Q 336.c1
Q\Q 1008.e1