Properties

Label 2.0.3.1-4489.1-CMa1
Base field Q(3)\Q(\sqrt{-3})
Conductor norm 4489 4489
CM yes (3-3)
Base change no
Q-curve yes
Torsion order 1 1
Rank not available

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(3)\Q(\sqrt{-3})

Generator aa, with minimal polynomial x2x+1 x^{2} - x + 1 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

y2+(a+1)y=x3+(a1)x2+ax+2040a987{y}^2+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+a{x}+2040a-987
sage: E = EllipticCurve([K([0,0]),K([-1,-1]),K([1,1]),K([0,1]),K([-987,2040])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([-1,-1]),Polrev([1,1]),Polrev([0,1]),Polrev([-987,2040])], K);
 
magma: E := EllipticCurve([K![0,0],K![-1,-1],K![1,1],K![0,1],K![-987,2040]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

Not computed (0r2 0 \le r \le 2 )

Invariants

Conductor: N\frak{N} = (77a+45)(-77a+45) = (9a7)2(9a-7)^{2}
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 4489 4489 = 67267^{2}
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 58853475a+1378589443-58853475a+1378589443
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (58853475a+1378589443)(-58853475a+1378589443) = (9a7)10(9a-7)^{10}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 1822837804551761449 1822837804551761449 = 671067^{10}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 0 0
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z[(1+3)/2]\Z[(1+\sqrt{-3})/2]    (complex multiplication)
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z[(1+3)/2]\Z[(1+\sqrt{-3})/2]   
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = U(1)\mathrm{U}(1)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 0 0
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: r?r?   0r20 \le r \le 2
Regulator*: Reg(E/K)\mathrm{Reg}(E/K) 1 1
Néron-Tate Regulator*: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 1 1
Global period: Ω(E/K)\Omega(E/K) 0.844907201181166536160218623038423210180 0.844907201181166536160218623038423210180
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 1 1
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 11
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 1.9512296001687991653966573082374851614 1.9512296001687991653966573082374851614
Analytic order of Ш*: Шan{}_{\mathrm{an}}= 4 4 (rounded)

* Conditional on BSD: assuming rank = analytic rank.

Note: We expect that the nontriviality of Ш explains the discrepancy between the upper bound on the rank and the analytic rank. The application of further descents should suffice to establish the weak BSD conjecture for this curve.

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There is only one prime p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(9a7)(9a-7) 6767 11 IIII^{*} Additive 1-1 22 1010 00

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
6767 67Cs.9.1

For all other primes pp, the image is a Borel subgroup if p=3p=3, a split Cartan subgroup if (3p)=+1\left(\frac{ -3 }{p}\right)=+1 or a nonsplit Cartan subgroup if (3p)=1\left(\frac{ -3 }{p}\right)=-1.

Isogenies and isogeny class

This curve has no rational isogenies other than endomorphisms. Its isogeny class 4489.1-CMa consists of this curve only.

Base change

This elliptic curve is a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.