Properties

Label 2.0.3.1-48384.2-g3
Base field Q(3)\Q(\sqrt{-3})
Conductor norm 48384 48384
CM no
Base change no
Q-curve no
Torsion order 1 1
Rank 1 1

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Base field Q(3)\Q(\sqrt{-3})

Generator aa, with minimal polynomial x2x+1 x^{2} - x + 1 ; class number 11.

sage: R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([1, -1, 1]))
 
gp: K = nfinit(Polrev([1, -1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 1]);
 

Weierstrass equation

y2=x3+(a+1)x2+(22a25)x+73a9{y}^2={x}^{3}+\left(a+1\right){x}^{2}+\left(-22a-25\right){x}+73a-9
sage: E = EllipticCurve([K([0,0]),K([1,1]),K([0,0]),K([-25,-22]),K([-9,73])])
 
gp: E = ellinit([Polrev([0,0]),Polrev([1,1]),Polrev([0,0]),Polrev([-25,-22]),Polrev([-9,73])], K);
 
magma: E := EllipticCurve([K![0,0],K![1,1],K![0,0],K![-25,-22],K![-9,73]]);
 

This is a global minimal model.

sage: E.is_global_minimal_model()
 

Mordell-Weil group structure

Z\Z

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(12a1:48a32:1)\left(12 a - 1 : 48 a - 32 : 1\right)0.125396655890019468737386943575325869910.12539665589001946873738694357532586991\infty

Invariants

Conductor: N\frak{N} = (48a+192)(48a+192) = (2a+1)3(2)4(3a2)(-2a+1)^{3}\cdot(2)^{4}\cdot(3a-2)
sage: E.conductor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor norm: N(N)N(\frak{N}) = 48384 48384 = 334473^{3}\cdot4^{4}\cdot7
sage: E.conductor().norm()
 
gp: idealnorm(ellglobalred(E)[1])
 
magma: Norm(Conductor(E));
 
Discriminant: Δ\Delta = 1966080a+16711681966080a+1671168
Discriminant ideal: Dmin=(Δ)\frak{D}_{\mathrm{min}} = (\Delta) = (1966080a+1671168)(1966080a+1671168) = (2a+1)3(2)15(3a2)3(-2a+1)^{3}\cdot(2)^{15}\cdot(3a-2)^{3}
sage: E.discriminant()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant norm: N(Dmin)=N(Δ)N(\frak{D}_{\mathrm{min}}) = N(\Delta) = 9943923032064 9943923032064 = 33415733^{3}\cdot4^{15}\cdot7^{3}
sage: E.discriminant().norm()
 
gp: norm(E.disc)
 
magma: Norm(Discriminant(E));
 
j-invariant: jj = 1598955686a+9479132744 \frac{1598955}{686} a + \frac{947913}{2744}
sage: E.j_invariant()
 
gp: E.j
 
magma: jInvariant(E);
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z   
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}}) = Z\Z    (no potential complex multiplication)
sage: E.has_cm(), E.cm_discriminant()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)

BSD invariants

Analytic rank: ranr_{\mathrm{an}}= 1 1
sage: E.rank()
 
magma: Rank(E);
 
Mordell-Weil rank: rr = 11
Regulator: Reg(E/K)\mathrm{Reg}(E/K) 0.12539665589001946873738694357532586991 0.12539665589001946873738694357532586991
Néron-Tate Regulator: RegNT(E/K)\mathrm{Reg}_{\mathrm{NT}}(E/K) 0.250793311780038937474773887150651739820 0.250793311780038937474773887150651739820
Global period: Ω(E/K)\Omega(E/K) 2.2120949694505331200974455779075360722 2.2120949694505331200974455779075360722
Tamagawa product: pcp\prod_{\frak{p}}c_{\frak{p}}= 12 12  =  12231\cdot2^{2}\cdot3
Torsion order: #E(K)tor\#E(K)_{\mathrm{tor}}= 11
Special value: L(r)(E/K,1)/r!L^{(r)}(E/K,1)/r! 3.8436190504537616227339422193491281347 3.8436190504537616227339422193491281347
Analytic order of Ш: Шan{}_{\mathrm{an}}= 1 1 (rounded)

BSD formula

3.843619050L(E/K,1)=?#Ш(E/K)Ω(E/K)RegNT(E/K)pcp#E(K)tor2dK1/212.2120950.25079312121.7320513.843619050\displaystyle 3.843619050 \approx L'(E/K,1) \overset{?}{=} \frac{ \# Ш(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \approx \frac{ 1 \cdot 2.212095 \cdot 0.250793 \cdot 12 } { {1^2 \cdot 1.732051} } \approx 3.843619050

Local data at primes of bad reduction

sage: E.local_data()
 
magma: LocalInformation(E);
 

This elliptic curve is not semistable. There are 3 primes p\frak{p} of bad reduction.

p\mathfrak{p} N(p)N(\mathfrak{p}) Tamagawa number Kodaira symbol Reduction type Root number ordp(N\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}) ordp(Dmin\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}) ordp(den(j))\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))
(2a+1)(-2a+1) 33 11 IIII Additive 11 33 33 00
(2)(2) 44 44 I7I_{7}^{*} Additive 1-1 44 1515 33
(3a2)(3a-2) 77 33 I3I_{3} Split multiplicative 1-1 11 33 33

Galois Representations

The mod p p Galois Representation has maximal image for all primes p<1000 p < 1000 except those listed.

prime Image of Galois Representation
33 3Cs[2]

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree dd for d=d= 3.
Its isogeny class 48384.2-g consists of curves linked by isogenies of degrees dividing 9.

Base change

This elliptic curve is not a Q\Q-curve.

It is not the base change of an elliptic curve defined over any subfield.